0
RESEARCH PAPERS

Low-Cost TiO2 Photocatalytic Technology for Water Potabilization in Plastic Bottles For Isolated Regions. Photocatalyst Fixation

[+] Author and Article Information
Jorge M. Meichtry, Hurng J. Lin, Luciana de la Fuente, Ivana K. Levy, Eduardo A. Gautier

Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina

Miguel A. Blesa

Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina and Escuela de Posgrado, Universidad Nacional de General San Martín, Av. 25 de Mayo e Irigoyen, San Martín, Prov. de Buenos Aires, Argentina

Marta I. Litter

Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina and Escuela de Posgrado, Universidad Nacional de General San Martín, Av. 25 de Mayo e Irigoyen, San Martín, Prov. de Buenos Aires, Argentinalitter@cnea.gov.ar

J. Sol. Energy Eng 129(1), 119-126 (Sep 28, 2005) (8 pages) doi:10.1115/1.2391317 History: Received July 05, 2005; Revised September 28, 2005

Experiments to evaluate the photocatalytic activity of supported TiO2 to potabilize water in common plastic PET bottles under solar irradiation were performed. Commercial titanium dioxide (Degussa P-25) was applied to different cheap materials—glass rings, glass rods and porcelain beads—by dip coating, or directly to the plastic wall of the bottles. The adherence and stability of TiO2 on the supports and the photocatalytic activity in bottles under solar irradiation was evaluated using model compounds as 4-chlorophenol and 2,4-dichlorophenoxyacetic acid. Rings were found to be the best glass supports, but PET bottles were superior for this specific application, as no fragile fillings are used, and the materials can be easily fabricated on site.

FIGURES IN THIS ARTICLE
<>
Copyright © 2007 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

4-CP photocatalytic degradation under artificial light irradiation on TiO2-coated microslides. [4-CP]=0.2mM, pH 3, I0(365)=45W∕m2.

Grahic Jump Location
Figure 2

Influence of the number of layers on the 4-CP photocatalytic degradation on “beads.” [4-CP]=0.2mM, pH 3, I0(365)=45W∕m2.

Grahic Jump Location
Figure 3

4-CP photocatalytic degradation under solar irradiation on different supports in “sm” bottles. [4-CP]=0.2mM, pH 3. Average UV light intensity at 365nm:5.9W∕m2.

Grahic Jump Location
Figure 4

4-CP photocatalytic degradation under solar irradiation on different supports in “lg” bottles. [4-CP]=0.2mM, pH 3. Average UV light intensity at 365nm:5.9W∕m2.

Grahic Jump Location
Figure 5

2,4-D photocatalytic degradation under solar light irradiation on different supports in small bottles. [2,4-D]=0.5mM, pH 6.8. Average UV light intensity at 365nm:5.3W∕m2.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In