Simulation of a Solar Stirling Engine Operating Under Various Weather Conditions on Mars

[+] Author and Article Information
Viorel Badescu

Candida Oancea Institute of Solar Energy, Faculty of Mechanical Engineering, Polytechnic University of Bucharest, Spl. Independentei 313, 77206 Bucharest, Romania

J. Sol. Energy Eng 126(2), 812-818 (May 04, 2004) (7 pages) doi:10.1115/1.1687796 History: Received September 01, 2003; Revised November 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Hibbs, B. D., 1989, “Mars Rover Feasibility Study,” Final Report Aero Vironement, Inc, Report AV-FR 89/7011, October 1989.
Collozza, A. J., 1990, “Preliminary Design of a Long-Endurance Mars Aircraft,” NASA CR185243, Sverdrup Technology Inc., Aerospace Technology Park, Brookpark, Ohio 44135, prepared for Lewis Research Center under Contract NAS 3-25266, April 1990.
McKissock, B. I., Kohout, L. L., and Schmitz, P. C., 1990, “A Solar Power System for an Early Mars Expedition,” NASA Technical Memorandum 103219, Lewis Research Center, Cleveland, Ohio, American Institute of Chemical Engineers, Summer National Meeting, August 19–23, 1990.
Golombek,  M. P., Cook,  R. A., Economou,  T., Folkner,  W. M., Haldermann,  A. F. C., Kallemeyn,  P. H., Knudsen,  J. M., Manning,  R. M., Moore,  H. J., Parker,  T. J., Rieder,  R., Schofield,  J. T., Smith,  P. H., and Vaughan,  R. M., 1997, “Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions,” Science, 278(5344), pp. 1743–1748.
Menetrey, W. R., 1963, “Space Applications of Solar Energy,” in Introduction to the Utilization of Solar Energy, Eds. A. M. Zarem, D. D. Erway, McGraw Hill, New York, p. 326.
Prisnjakov, V. F., Statsenko, I. N., Kondratjev, A. I., Markov, V. L., Petrov, B. E., Gabrinets, V. A., 1991, “Developing Space Power Brayton Systems with Solar Heat Input,” Research of Working Process of High Temperature Latent Heat Storage System, Proc. of SPS 91, Power from space, Paris 27–30 August 1991, pp. 465–470.
Prisnyakov, V., 1991, “SPS Interest and Studies in USSR,” Proc. of SPS 91, Power from space, Paris 27–30 August 1991, p. 36.
Secunde, R., Labus, T. L., Lovely, R. G., 1989, “Solar Dynamic Power Module Design,” Proc 24th International Energy Conversion Conf., vol 1, IEEE, Piscataway, New Jersey, pp. 299–307.
Weingartner,  S., Blumenberg,  J., and Ruppe,  H. O., 1994, “Influence of Orbit on Solar-Dynamic Power Systems,” Space Power, 13 (1&2), pp. 103–120.
Martin,  L. J., and Zurck,  R. W., 1993, “An Analysis of the History of Dust Activity on Mars,” J. Geophys., 98(E2), pp. 3221–3246.
Hourdin,  F., Forget,  F., and Talagrand,  O., 1995, “The Sensitivity of the Martian Surface Pressure and Atmospheric Mass Budget to Various Parameters: A Comparison Between Numerical Simulations and Viking Observations,” J. Geophys. Res., 100(E3), pp. 5501–5523.
Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E., and Leovy, C. B., 1992, Chapter 26: “Dynamics of the Atmosphere Mars,” pp. 835–933; in Mars, Eds H. H. Kieffer et al., 1498 pages, University of Arizona Press.
Badescu,  V., 1998, “Different Strategies for Maximum Solar Radiation Collection on Mars Surface,” Acta Astronaut., 43(7–8), pp. 409–421.
Badescu,  V., Popescu,  Gh., Feidt,  M., 2000, “Design and Optimization of a Combination Solar Collector-Thermal Engine Operating on Mars,” Renewable Energy, 21, pp. 1–22.
Badescu,  V., Popescu,  G., Feidt,  M., 2001, “Simulation of a Thermal Solar Power Plant Operating on Mars Under Clear Sky and Dust Storm Conditions,” Acta Astronaut., 49(12), pp. 667–679.
Badescu,  V., Popescu,  G., Feidt,  M., 2000, “Simulation of a Martian Solar Thermal Power Plant: Diurnal Operation and Power-efficiency Correlations,” J. Br. Interplanet. Soc., 53(3/4), pp. 131–144.
Eaton,  C. B., Blum,  H. A., 1975, “The Use of Moderate Vacum Environments as a Means of Increasing the Collectors Efficiencies and Operating Temperatures of a Flat-plate Solar Collectors,” Sol. Energy, 17, pp. 151–158.
Stefanescu, D., Marinescu, M., Danescu, Al., 1982, “Transferul de Caldura ı⁁n Tehnica,” Vol. 1, Editura Tehnica, Bucuresti.
Pop, M. G., Leca, A., Prisecaru, I., Neaga, C., Zidaru, G., Musatesct, V., and Isbasoiu, E. C., 1987, “Indrumar-Tabele, Monograme si Formule Termotechnice,” Vol. 1, Editura Tehnica, Bucuresti.
Duffie, J. A., and Beckmann, W. A., 1991, Solar Energy of Thermall Processes, Wiley Interscience, New York.
Lide, D. R., (Ed.) 1991, Handbook of Chemistry and Physics, 71th Edition, pp. 15–39, C.R.C. Press.
Senft, J. R., 1996, An Introduction to Low Temperature Differential Stirling Engines, Moriya Press, River Falls, WI.
Howell,  J. R., and Bannerot,  R. B., 1997, “Optimum Solar Collector Operation for Maximum Cycle Work Output,” Sol. Energy, 19, pp. 149–153.
Badescu,  V., 1992, “Optimum Operation of a Solar Converter in Combination with a Stirling or Ericsson Heat Engine,” Energy, The International Journal 17 (6), pp. 601–607.
Lee, S. W., 1995, “Viking Lander Meteorology and Atmospheric Opacity Data Set Archive,” Volume VL-1001, Laboratory for Atmospheric and Space Physics, Campus Box 392, University of Colorado, CO 80309-0392, (10 July 1995).
Badescu,  V., 1998, “Simulation of Solar Cells Utilization on the Surface of Mars,” Acta Astron., 43(9–10), pp. 443–453.
Pollack,  J. B., Haberle,  R. M., Murphy,  J. R., Shaeffer,  J., Lee,  H., 1990, “Simulation of the General Circulation of the Martian Atmosphere,” 1. Polar processes. Acta Astronaut., 95, pp. 1447–1473.
Badescu,  V., 2001, “Inference of Atmospheric Optical Depth from Near-Surface Meteorological Parameters on Mars,” Renewable Energy, 24, pp. 45–57.
Benz,  N., and Beikircher,  T., 1999, “High Efficiency Evacuated Flat-plate Solar Collectors for Process Steam Production,” Sol. Energy, 65, pp. 111–118.


Grahic Jump Location
The system analyzed here (see Tables 1 and 2).
Grahic Jump Location
Solar collector thermal resistances (see Tables 1 and 2)
Grahic Jump Location
Dependence of maximum power Pmax and maximum solar efficiency ηsol,max on local solar time (in Earth hours). Results obtained by using the meteorological data during the autumn and winter in the first year at VL1 site.
Grahic Jump Location
Dependence of maximum power Pmax and maximum solar efficiency ηsol,max on atmospheric optical depth. Results obtained by using the meteorological data during the autumn and winter in the first year at VL1 site.
Grahic Jump Location
Dependence of the maximum power Pmax and optimum collector temperature Tc,opt on maximum solar efficiency ηsol,max. All available meteorological data were used (see Table 5).
Grahic Jump Location
Dependence of overall heat loss coefficient UL on collector temperature. All available meteorological data were used (see Table 5).




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In