0
TECHNICAL PAPERS

Solar Methane Reforming Using a New Type of Catalytically-Activated Metallic Foam Absorber

[+] Author and Article Information
Tatsuya Kodama

Department of Chemistry & Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japane-mail: tkodama@eng.niigata-u.ac.jp

Atsushi Kiyama, Takuya Moriyama

Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan

Osamu Mizuno

Photonic and Electronic Devices, R & D Department, Itami R&D Laboratories, Sumitomo Electric Industries, Ltd., Japan

J. Sol. Energy Eng 126(2), 808-811 (May 04, 2004) (4 pages) doi:10.1115/1.1688382 History: Received December 01, 2003; Revised December 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Grasse,  W., Tyner,  C. E., and Steinfeld,  A., 1999, “International R & D Collaboration in Developing Solar Thermal Technologies for Electric Power and Solar Chemistry: The solarPACES Program of the International Energy Agency (IEA),” J. Phys. (France), 9, pp. Pr3-17-22.
Steinfeld,  A., and Schubnell,  M., 1993, “Optimum Aperture Size and Operating Temperature of a Solar Cavity-receiver,” Sol. Energy, 50(1), pp. 19–25.
Edwards, J., Duffy, G., Benito, R., Do, T., Dave, N., and McNaughton, R., 2000, “CSIRO’s Solar Thermal-fossil Energy Hybrid Technology for Advanced Power Generation,” Solar Thermal 2000, Proc. the 10th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, H. Kreetz, K. Lovegrove, W. Meike, editors., The Meeting Manager Pty Ltd, Sydney, pp. 27–32.
Böhmer,  M., Langnickel,  U., and Sanchez,  M., 1991, “Solar Steam Reforming of Methane,” Solar Energy Materials, 24, pp. 441–448.
Epstein, M., Spiewak, I., Segal, A., Levy, I., Lieberman, D., Meri, M., and Lerner, V., 1997, “Solar Experiments with a Tubular Reformer,” Proc. of the 8th International Symposium on Solar Thermal Concentrating Technology (Cologne, Germany, 1996), M. Becker, M. Böhmer, editors., C. F. Muller, Heidelberg, Vol. 3, pp. 1209–1229.
Buck,  R., Muir,  J. F., and Hogan,  R. E., 1991, “Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/reactor: The CAESAR Project,” Solar Energy Materials, 24, pp. 449–463.
Muir,  J. F., Hogan,  R. E., Skocypec,  R. D., and Buck,  R., 1994, “Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I-Test and analysis,” Sol. Energy, 52(6), pp. 467–477.
Skoypec,  R. D., Hogan,  R. E., and Muir,  J. F., 1994, “Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: II-Modeling and Analysis,” Sol. Energy, 52(6), pp. 479–490.
Buck,  R., Abele,  M., Bauer,  H., Seitz,  A., and Tamme,  R., 1994, “Development of a Volumetric Receiver-reactor for Solar Methane Reforming,” ASME J. Sol. Energy Eng., 116, pp. 73–78.
Abele,  M., Bauer,  H., Buck,  R., Tamme,  R., and Wörner,  A., 1996, “Design and Test Results of a Receiver-reactor for Solar Methane Reforming,” ASME J. Sol. Energy Eng. 118, pp. 339–346.
Tanashev,  Y. Y., Fedoseev,  V. I., and Aristov,  Y. I., 1997, “High-temperature Catalysis Driven by the Direct Action of Concentrated Light or a High-density Electron Beam,” Catal. Today, 39, pp. 251–260.
Wörner,  A., and Tamme,  R., 1998, “CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-reactor,” Catal. Today, 46, pp. 165–174.
Kiyama, A., Kondoh, Y., Yokoyama, T., Shimizu, K-I., and Kodama, T., 2002, “New Catalytically-activated Metal/ceramic Foam Absorbers for Solar Reforming Receiver-reactor,” Proc. 11th Solar PACES International Symposium, A. Steinfeld, ed., Paul Scherrer Institute, Villgen PSI, pp. 337–343.
Kodama,  T., Kiyama,  A., and Shimizu,  K.-I., 2003, “Catalytically-Activated Metal Foam Absorber for Light-to-Chemical Energy Conversion via Solar Reforming of Methane,” Energy Fuels, 17, pp. 13–17.
Gregg,  D. W., Taylor,  R. W., Campbell,  J. H., Taylor,  J. R., and Cotton,  A., 1980, “Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures,” Sol. Energy, 25, pp. 353–364.
Antal,  M. J., Hofmann,  L., and Moreiro,  J. R., 1983, “Design and Operation of a Solar Fired Biomass Flash Pyrolysis Reactor,” Sol. Energy, 30, pp. 299–312.
Taylor,  R. W., Berjoan,  R., and Coutures,  J. P., 1983, “Solar Gasification of Carbonaceous Materials,” Sol. Energy, 30, pp. 513–525.
Nakamura,  T., 1977, “Hydrogen Production from Water Utilizing Solar Heat at High Temperatures,” Sol. Energy, 19, pp. 467–475.
Sibieude,  F., Ducarroir,  M., Tofighi,  A., and Ambriz,  J., 1982, “High Temperature Experiments with a Solar Furnace. The Decomposition of Fe3O4,Mn3O4, CdO,” Int. J. Hydrogen Energy, 7(1), pp. 79–88.
Lundberg,  M., 1993, “Model Calculations on Some Feasible Two-step Water Splitting Processes,” Int. J. Hydrogen Energy, 18(5), pp. 369–376.
Ehrensberger,  K., Frei,  A., Kuhn,  P., Oswald,  H., and Hug,  P., 1995, “Comparative Experimental Investigations of the Water-splitting Reaction with Iron Oxide Fe1−yO and Iron Manganese Oxides (Fe1−xMnx)1−yO,” Solid State Ionics, 78, pp. 151–160.
Tamaura,  T., Steinfeld,  A., Kuhn,  P., and Ehrensberger,  K., 1995, “Production of Solar Hydrogen by a Novel, 2-step, Water-splitting Thermochemical Cycle,” Energy (Oxford), 20(4), pp. 325–330.

Figures

Grahic Jump Location
Schematic of the experimental setup for methane reforming of simulated solar radiation using a foam absorber.
Grahic Jump Location
Comparison between the metallic (Ru/Al2O3/ metal-30cpi) and ceramic (Ru/Al2O3/ceramic-30cpi) foam absorbers as a function of the average flux density of irradiation in terms of the chemically-absorbed power density (Pd)
Grahic Jump Location
Chemically-absorbed power density (Pd) as a function of the average flux density of irradiation. Symbols: 20 cpi (•) and 30cpi (○) metal foam absorbers in the present work, Tanashev et al. 11 (□) and the CAESAR project 6 (▴).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In