0
TECHNICAL PAPERS

Photocatalytic Oxidation of Benzene in Air

[+] Author and Article Information
Hisahiro Einaga, Takashi Ibusuki, Shigeru Futamura

National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan

J. Sol. Energy Eng 126(2), 789-793 (May 04, 2004) (5 pages) doi:10.1115/1.1687402 History: Received August 01, 2003; Revised November 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fu,  X., Zeltner,  W. A., and Anderson,  M. A., 1996, “Applications in Photocatalytic Purification of Air,” Stud. Surf. Sci. Catal., 103, pp. 445–461.
d’Hennezel,  O., Pichat,  P., and Ollis,  D. F., 1998, “Benzene and Toluene Gas-Phase Photocatalytic Degradation over H2O and HCL Pretreated TiO2: By-Products and Mechanisms,” J. Photochem. Photobiol., A: Chem., 118(3), pp. 197–204.
d’Hennezel,  O., and Ollis,  D. F., 1997, “Trichloroethylene-Promoted Photocatalytic Oxidation of Air Contaminants,” J. Catal., 167(1), pp. 118–126.
Larson,  S. A., and Falconer,  J. L., 1997, “Initial Reaction Steps in Photocatalytic Oxidation of Aromatics,” Catal. Lett., 44(1–2), pp. 57–65.
Falconer,  J. L., and Magrini-Bair,  K. A., 1998, “Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2,” J. Catal., 179(1), pp. 171–178.
Fu,  X., Zeltner,  W. A., and Anderson,  M. A., 1995, “The Gas-Phase Photocatalytic Mineralization of Benzene on Porous Titania-Based Catalysts,” Appl. Catal., B: Environ., 6(3), pp. 209–224.
Lichtin,  N. N., and Sadeghi,  M., 1998, “Oxidative Photocatalytic Degradation of Benzene Vapor Over TiO2,” J. Photochem. Photobiol., A: Chem., 113(1), pp. 81–88.
Sitkiewitz,  S., and Heller,  A., 1996, “Photocatalytic Oxidation of Benzene and Stearic Acid on Sol-Gel Derived TiO2 Thin Films Attached to Glass,” New J. Chem., 20(2), pp. 233–241.
Jacoby,  W. A., Blake,  D. M., Fennell,  J. A., Boulter,  J. E., Vargo,  L. A., George,  M. C., and Dolberg,  S. K., 1996, “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J. Air Waste Manage. Assoc., 46, pp. 891–898.
Uner,  D. O., and Ozbek,  S., 1999, “The Deactivation Behavior of the TiO2 Used as a Photo-Catalyst for Benzene Oxidation,” Stud. Surf. Sci. Catal., 126, pp. 411–414.
Einaga,  H., Futamura,  S., and Ibusuki,  T., 2002, “Heterogeneous Photocatalytic Oxidation of Benzene, Toluene, Cyclohexene and Cyclohexane in Humidified Air: Comparison of Decomposition Behavior on Photoirradiated TiO2 Catalyst,” Appl. Catal., B: Environ., 38(3), pp. 215–225.
Einaga,  H., Futamura,  S., and Ibusuki,  T., 1999, “Photocatalytic Decomposition of Benzene Over TiO2 in a Humidified Airstream,” Phys. Chem. Chem. Phys., 1(20), pp. 4903–4908.
Murov, S. L., 1974, Handbook of Photochemistry, Marcel Dekker, Inc., New York, Sec. 13.
Ohko,  Y., Hashimoto,  K., and Fijishima,  A., 1997, “Kinetics of Photocatalytic Reactions Under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films,” J. Phys. Chem. A, 101(43), pp. 8057–8062.
Aguad,  M. A., Anderson,  M. A., and Hill,  C. G., 1994, “Influence of Light Intensity and Membrane Properties on the Photocatalytic Degradation of Formic Acid Over TiO2 Ceramic Membranes,” J. Mol. Catal., 89(1–2), pp. 165–178.
D’Oliveira,  J.-C., Al-Sayyed,  G., and Pichat,  P., 1990, “Photodegradation of 2- and 3-Chlorophenol in Titanium Dioxide Aqueous Suspensions,” Environ. Sci. Technol., 24(7), pp. 990–996.
Kormann,  C., Bahnemann,  D. W., and Hoffmann,  M. R., 1991, “Photolysis of Chloroform and Other Organic Molecules in Aqueous Titanium Dioxide Suspensions,” Environ. Sci. Technol., 25(3), pp. 494–500.
Hoffman,  A. J., Carraway,  E. R., and Hoffmann,  M. R., 1994, “Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids,” Environ. Sci. Technol., 28(5), pp. 776–785.
Egerton,  T. A., and King,  C. J., 1979, “The Influence of Light Intensity on Photoactivity in TiO2 Pigmented Systems,” J. Oil. Col. Chem. Assoc., 62 , pp. 386–391.
Einaga,  H., Futamura,  S., and Ibusuki,  T., 2001, “Complete Oxidation of Benzene in Gas Phase by Platinized Titania Photocatalysts,” Environ. Sci. Technol., 35(9), pp. 1880–1884.
Schwitzgebel,  J., Ekerdt,  J. G., Gerischer,  H., and Heller,  A., 1995, “Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions,” J. Phys. Chem., 99(15), pp. 5633–5638.

Figures

Grahic Jump Location
Photochemical reactors used in this study
Grahic Jump Location
Diffuse reflectance UV-VIS spectrum of TiO2 and emission spectrum of 20 W black light
Grahic Jump Location
Dependence of benzene conversion on the amount of TiO2 loaded in the reactor
Grahic Jump Location
Time course for benzene photooxidation with TiO2 under various conditions
Grahic Jump Location
Effect of initial benzene concentration on the rate of benzene photooxidation
Grahic Jump Location
Effect of incident light intensity at 365 nm on the rate of benzene photooxidation
Grahic Jump Location
Log-log plot of the reaction rate versus incident light intensity
Grahic Jump Location
Changes in the UV-VIS spectra of carbonaceous materials on TiO2. (a) Intensity at 0.002 Einsteins min−1 (365 nm), (b) at 0.008 Einsteins min−1 , and (c) at 0.02 Einsteins min−1 .
Grahic Jump Location
Effect of the incident light intensity on the selectivity to CO2 and CO
Grahic Jump Location
Reaction mechanism for benzene photooxidation on TiO2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In