0
TECHNICAL PAPERS

Flux Distribution Delivered by a Fresnel Lens Used for Concentrating Solar Energy

[+] Author and Article Information
A. Ferriere

CNRS-IMP, Centre du four solaire Félix Trombe, BP5, 66125 Odeillo, France

G. P. Rodriguez, J. A. Sobrino

ETSII-UCLM, Campus Universitario s/n, 13071 Ciudad Real, Spain

J. Sol. Energy Eng 126(1), 654-660 (Feb 12, 2004) (7 pages) doi:10.1115/1.1638783 History: Received April 01, 2002; Revised May 01, 2003; Online February 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yu,  Z. K., Zong,  Q. Y., and Tam,  Z. T., 1982, “A Preliminary Investigation of Surface Hardening of Steel and Iron by Solar Energy,” Journal of Heat Treating, 2(4), pp. 344–350.
Maı̈boroda,  V. P., Pasichniy,  V. V., Palaguta,  N. G., Stegnii,  A. I., and Krivenko,  V. G., 1986, “Special Features of Local Heat Treatment of Steel 34KhN3MFA in the Focal Spot of a Solar Furnace,” Fiz. Met. Metalloved., 1, pp. 59–60.
Stanley,  J. T., Fields,  C. I., and Pitts,  J. R., 1990, “Surface Treating with Sunbeams,” Adv. Mat. Proc., 12, pp. 16–21.
Rodriguez,  G. P., De Damborenea,  J. J., and Vázquez,  A. J., 1997, “Surface Hardening of Steel in a Solar Furnace,” Surf. Coat. Technol., 92, pp. 165–170.
Ferriere,  A., Faillat,  C., Galasso,  S., Barallier,  L., and Masse,  J. E., 1999, “Surface Hardening of Steel Using Highly Concentrated Solar Energy Process,” ASME J. Sol. Energy Eng., 21, pp. 36–39.
Douale,  P., Serror,  S., Pradeilles Duval,  R. M., Serra,  J. J., and Felder,  E., 1999, “Thermal Shocks on an Electrolytic Chromium Coating in a Solar Furnace,” J. Phys. IV, 9, pp. 429–434.
Korol,  A. A., Korol,  E. A., Kasich-Pilipenko,  E. A., Verkhovodov,  I. E., Dvernyakov,  P. A., and Kadyrov,  V. Kh., 1983, “Use of Concentrated Solar Energy in the Application of Slurry Coatings,” Poroshk. Metall. (Kiev), 4, pp. 39–42.
Yu,  Z. K., and Lu,  J. T., 1987, “Microstructure and Properties of Nodular Cast Iron Surface Alloyed with Tungsten Carbide by Concentrated Solar Energy,” Surf. Eng., 3(1), pp. 41–45.
Ivashchenko,  L. A., Rusakov,  G. V., Pasichnii,  V. V., Stegnii,  A. I., and Ponomarev,  S. S., 1989, “Deposition of Hardening Coating on Hard-alloy Tools Using Solar Power Plant,” Poroshk. Metall. (Kiev), 1(313), pp. 75–80.
Pitts, J. R., Stanley, J. T., and Fields, C. L., 1990, “Solar Induced Surface Transformation of Materials,” in Solar Thermal Technology-Research-Development and Applications, B. P. Gupta & W. H. Trangott, Eds., Hemisphere Publishing Corporation (New York, USA), pp. 459–470.
Lackey, W. L., Freeman, G. B., Mackie, P. E., O’Neil, D. J. and Hawley, P. M., 1990, “Solar-Enhanced Chemical Vapor Deposition (CVD) Production of Ceramic Whiskers,” in Solar Thermal Technology-Research-Development and Applications, B. P. Gupta & W. H. Trangott, Eds., Hemisphere Publishing Corporation (New York, USA), pp. 471–483.
Rawers,  C., Alman,  D. E., Lewandowski,  A., Petty,  A. V., and Pitts,  J., 1994, “Addition of a Nickel Aluminide Coating to Inconel 600 Using a Solar Furnace,” J. Mater. Sci. Lett., 13, pp. 1608–1611.
Lewandowski,  A., 1993, “Deposition of Diamond-like Carbon Films and Other Materials Processes Using a Solar Furnace,” Mat. Tech., 8, 11/12, pp. 237–240.
Fernandez,  B. J., Lopez,  V., Vazquez,  A. J., and Martinez,  D., 1998, “Cladding of Ni Superalloy Powders on AISI 4140 Steel with Concentrated Solar Energy,” Sol. Energy Mater. and Sol. Cells, 53(1–2), pp. 153–161.
Yu,  Z. K., Zong,  Q. Y., and Tam,  Z. T., 1983, “A Further Investigation of Surface Hardening of Iron and Steel by Solar Energy,” Journal of Heat Treating, 3(2), pp. 120–125.
Zong,  Q. Y., Tam,  Z. T., Cao,  M. D., and Yu,  Z. K., 1986, “Localized Hardening of a Machine Gun Bolt by Means of High-intensity Solar Beam,” Heat Treat. Met., 6, pp. 15–18.
Nixon, G., 1977, “Cast Acrylic Fresnel Lens Solar Concentrator,” in Proceedings of ERDA Conference on Concentrating Solar Collectors, Atlanta.
James, L., and Williams, J., 1978, “Fresnel Optics for Solar Concentration on Photovoltaic Cells,” in Proceedings of 13th IEEE Photovoltaic Specialists Conference, IEEE New York.
Lorenzo,  E., and Luque,  A., 1981, “Fresnel Lens Analysis for Solar Energy Applications,” Appl. Opt., 20(17), pp. 2941–2945.
Lorenzo,  E., and Luque,  A., 1982, “Comparison of Fresnel Lenses and Parabolic Mirrors as Solar Energy Concentrators,” Appl. Opt., 21(10), pp. 1851–1853.
Rodriguez,  G. P., Vazquez,  A. J., and De Damborenea,  J. J., 1994, “Steel Heat Treatment with Fresnel Lenses,” Mater. Sci. Forum, 163–164, pp. 133–138.
Garcı́a,  I., Sanchez Olı́as,  J., De Damborenea,  J. J., and Vazquez,  A. J., 1998, “Sintesis de nitruro de titanio mediante láser y energia solar concentrada,” Rev. Metal. Madrid, 34(2), pp. 109–113.
Garcı́a,  I., Sánchez Olı́as,  J., and Vázquez,  A. J., 1999, “A New Method for Materials Synthesis: Solar Energy Concentrated by Fresnel Lens,” J. Phys. IV, 9, pp. 435–440.
Rodriguez,  G. P., Garcı́a,  I., and Vázquez,  A. J., 1999, “Coating Processing by Self Propagating High Temperature Synthesis (SHS) Using a Fresnel Lens,” J. Phys. IV, 9, pp. 411–416.
Ferriere,  A., and Rivoire,  B., 2002, “An Instrument for Measuring Concentrated Solar Radiation: A Photo-sensor Interfaced with an Integrating Sphere,” Sol. Energy, 72(3), pp. 187–193.
Ferriere, A., and Rivoire, B., 2000, “Measurement of Concentrated Solar Radiation: The Asterix Calorimeter,” in Proceedings of the 10th SolarPACES Int. Symposium on Solar Thermal Concentrating Technologies, Sydney, 8–10 March 2000, H. Kreetz, Ed. (ANU, Australia), pp. 233–240.
Ferriere, A., Robert, J-F., Kaluza, J., and Neumann, A., 2000, “Concentrated Solar Flux Measurements: Results of the Second SolarPACES Fluxmeter Intercomparison Campaign,” in Proceedings of the 10th SolarPACES Int. Symposium on Solar Thermal Concentrating Technologies, Sydney, 8–10 March 2000, H. Kreetz, Ed. (ANU, Australia), pp. 247–254.
Ferriere,  A., Lestrade,  L., Lebrun,  M., and Rivoire,  B., 1994, “Characteristics and Performance of a High Flux Solar Furnace: Application to Surface Thermal Treatment,” J. High Temp. Chem. Processes, 3, pp. 31–38.
Lorenzo,  E., 1981, “Chromatic Aberration Effect on Solar Energy Systems Using Fresnel Lenses,” Appl. Opt., 20(21), pp. 3729–3732.
Gineste,  J-M., Flamant,  G., and Olalde,  G., 1999, “Incident Solar Radiation Data at Odeillo Solar Furnaces,” J. Phys. IV, 9, pp. 623–628.
Font Tullot, I., 1984, in Atlas de la radiación solar en España, Instituto Nacional de Meteorologia, Madrid.

Figures

Grahic Jump Location
Schematic of the experimental set-up: position of the lens and definition of the reference system of coordinates.
Grahic Jump Location
Distribution of the concentration factor in the plane of peak concentration (z=0, distance 757 mm from the lens): (a) 2-D distribution; (b) Cross-sections along the x- and y-axis
Grahic Jump Location
Profiles of concentration factors in the planes z=0,z=−1.5 mm,z=+4 mm,z=−4 mm,z=−6 mm,z=+10 mm,z=+20 mm,z=+30 mm, and z=+42 mm.
Grahic Jump Location
Spots exceeding 75% of peak concentration (the areas are expressed in mm2)
Grahic Jump Location
Variation of the peak concentration factor along the optical axis
Grahic Jump Location
(a) General schematic of the refraction through the lens; (b) Refraction through one individual facet
Grahic Jump Location
(a) Ray tracing. The lens is represented by the r-axis, the outgoing rays concentrate on the optical axis represented by the F-axis. (b) Chromatic aberration in the region of maximum concentration. The full black horizontal lines represent the planes where the concentration was measured.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In