Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces

[+] Author and Article Information
D. Hernandez, G. Olalde, J. M. Gineste

Institut de Science et de Génie des Matériaux et Procédés, Font-Romeu, France

C. Gueymard

Solar Consulting Services, Bailey, CO, USA

J. Sol. Energy Eng 126(1), 645-653 (Feb 12, 2004) (9 pages) doi:10.1115/1.1636191 History: Received January 01, 2003; Revised May 01, 2003; Online February 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere Publ. Corp.
Horneck,  G. A., 1966, “Optical Method of Temperature Measurement,” Appl. Opt., 5, pp. 179–186.
Thorn, R. J., and Winslow, G. H., 1962, “Radiation of Thermal Energy From Real Bodies Temperature,” Temperature, Its Measurement and Control in Science and Industry, Ed. F. G. Brickwedde, Reinhold Publishing Corp. New York, 3 , pp. 421–447.
Nutter,  G. D., 1972, “Radiation Thermometry,” Mech. Eng. (Am. Soc. Mech. Eng.), 3,1, pp. 12–15.
Hahn,  J. W., and Rhee,  C., 1987, “Reference Method for Two-Color Pyrometer,” Appl. Opt., 26, pp. 5276–5279.
Coates,  P. B., 1981, “Multi-Wavelength Pyrometry,” Metrologia, 17, pp. 103–109.
Traverse, J. P., and Badie, J. M., 1976, “Mesure des températures par pyrométrie optique à l’aide d’un rayonnement laser,” Qualité, Revue Pratique du Controle Industriel, Editions Ampère, 79 , pp. 9–14.
Foex, M., and Coutures, J. P., 1961, “Remarques sur les Mesures de Température des Substances Traitées au Four Solaire,” Colloque sur l’Energie Solaire, Ed. du CNRS, Mont Louis.
Conn,  W. N., and Braught,  G., 1954, “Separation of Incident and Emitted Radiation in a Solar Furnace by Means of Rotating Sectors,” J. Opt. Soc. Am., 44, pp. 45–47.
Nogushi,  T., and Koseka,  T., 1966, “Temperature and Emissivity Measurement at 0.65 μm With a Solar Furnace,” Sol. Energy, 3, pp. 125–131.
Tschudi,  H. R., and Schubnell,  M., 1999, “Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry,” Rev. Sci. Instrum., 70, pp. 2719–2727.
Markham,  J. R., and Lewandoski,  A., 1996, “FT-IR Measurements of Emissivity and Temperature During High-Flux Solar Processing,” ASME J. Sol. Energy Eng., 118, pp. 20–29.
Sveatt,  W. C., and Phipps,  G. S., 1992, “Pyrometric Temperature Measurements in Solar Furnaces,” ASME J. Sol. Energy Eng., 2, pp. 1025–1028.
Tschudi,  H. R., and Morian,  G., 2001, “Pyrometric Temperature Measurements in Solar Furnaces,” ASME J. Sol. Energy Eng., 123, pp. 164–170.
Arashi,  H., and Sakurai,  T., 1976, “Infrared Pyrometry for Measuring Target Temperatures in a Solar Furnace,” High Temp. - High Press., 8, pp. 349–356.
Gueymard, C., 1995, “SMARTS2, Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment,” Rep. FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, FL.
Gueymard,  C., 2001, “Parameterized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance,” Sol. Energy, 71, pp. 325–346.
Berk, A., Bernstein, L. S., and Robertson, D. C., 1989, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” Rep. GL-TR-89-0122, Air Force Geophysical Lab., Hanscom, MA.
Anderson, G. P. et al., 1996, “Reviewing Atmospheric Radiative Modeling: New Developments in High and Moderate Resolution FASCODE/FASE and MODTRAN,” Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Society of Photo-Optical Instrumentation Engineers (SPIE).
Touloukian, Y. S., and De Witt, D. P., 1972, “Thermal Radiative Properties—Metallic Elements and Alloys,” TRPC Data Series, IFI/Plenum, pp. 158–159.
Foex,  M., and Coutures,  J. P., 1966, “Dispositif de Mesure de Température au Four Solaire par Pyrométrie dans l’Ultra-Violet,” Rev. Phys. Appl., 4, pp. 381–382.
Rozenbaum,  O., De Sousa,  M., Auger,  Y., and Echegut,  P., 1999, “Spectroscopic Method to Measure the Spectral Emissivity of Semi-Transparent Materials to High Temperature,” Rev. Sci. Instrum., 70, pp. 4020–4025.


Grahic Jump Location
Schematic diagram of the experimental setup
Grahic Jump Location
Mirror’s spectral reflectance R(λ) and typical Solar Performance Factor η(λ) for the installation
Grahic Jump Location
Solar radiance spectra. (E) Exoatmospheric; (T) Terrestrial.
Grahic Jump Location
Atmospheric absorption bands in the infrared spectrum
Grahic Jump Location
Spectral solar radiance (left Y axis) and filter transmittance (right Y axis) for the narrow absorption bands. Numbers give the key to the filters listed in Tables 1 and 2. (E) Exoatmospheric (T) Terrestrial.
Grahic Jump Location
Spectral solar radiance (left Y axis) and filter transmittance (right Y axis) for the larger absorption bands. Numbers give the key to the filters listed in Tables 1 and 2. (E) Exoatmospheric; (T) Terrestrial.
Grahic Jump Location
Spectral solar radiance (left Y axis) and transmittance (right Y axis) for the filter (#10) used under blackbody conditions. (E) Exoatmospheric; (T) Terrestrial.
Grahic Jump Location
Diffuse plane copper surface
Grahic Jump Location
Spectral reflectivity of copper 20
Grahic Jump Location
BRDF for copper at 0.831 μm: (1) Measurements; (2) Lambert’s cosine law.
Grahic Jump Location
Reflected solar flux for the copper target: (1) + symbols, diffuse surface; (2) × symbols, specular surface
Grahic Jump Location
Radiance measurement in the 8–12 μm band: (1) Without solar irradiance; (2) With solar irradiance; (3) With supplementary cutting quartz filter
Grahic Jump Location
Temperature errors versus apparent temperature calculated for the different working filters used here and for a diffusely reflecting sample with an emissivity of 0.8
Grahic Jump Location
Measured spectral emissivity of Al2O3 at 2087°C 22
Grahic Jump Location
Rotating reactor for alumina and photo of a cavity
Grahic Jump Location
Radiance temperature measurements for Al2O3 freezing plateau. (a) λ=1.6 μm; (b) Δλ=8–12 μm.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In