Performance Evaluation of the 200-kWth HiTRec-II Open Volumetric Air Receiver

[+] Author and Article Information
Bernhard Hoffschmidt

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Solare Energietechnik, D 51170 Köln, Germanye-mail: Bernhard.Hoffschmidt@dlr.de

Félix M. Téllez

CIEMAT/DER-PSA, Avda. Complutense, 22, E-28040, Madrid, Spain

Antonio Valverde, Jesús Fernández

CIEMAT/DER-PSA, Apartado, 22, E-04200 Tabernas, Spain

Valerio Fernández

SOLUCAR, Avda. de la Buaira, 2, E-41018 Sevilla, Spain

J. Sol. Energy Eng 125(1), 87-94 (Jan 27, 2003) (8 pages) doi:10.1115/1.1530627 History: Received June 01, 2001; Revised April 01, 2002; Online January 27, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Sanders Associates Inc., 1979, “1/4-Megawatt Solar Receiver.” Final Report. DOE/SF/90506-1, Oct.
Fricker, H. W., Winkler, C., Silva, M., and Chavez, J., 1990, “Design and Test Results of the Wire Receiver Experiment Almeria,” Solar Thermal Technology-Research Development and Applications, Proc. of 4 Int. Symp., Hemisphere Publishing Corp., New York, pp. 265–277.
Kribus,  A., Doron,  P., Rubin,  R., Reuven,  R., Taragan,  E., Duchan,  S., and Karni,  J., 2001, “Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 bar and 1200°C,” ASME J. Sol. Energy Eng., 123(1), pp. 10–17.
Pylkkänen, T., and Posnasky, M., 1994, “High Temperature Volumetric Gas Receiver: The Atlantis Ceramic Grid Receiver,” Proc. of 1994 ASME Joint Solar Engineering Conf., pp. 567–572.
Schmitz-Goeb, M., and Keintzel, G., 1997, “The PHOEBUS SOLAR Power Tower.” Solar Engineering, ASME, pp. 47–53.
Haeger, M., Keller, L., Monterreal, R., and Valverde, A., 1994, “PHOEBUS Technology Program Solar Air Receiver (TSA): Experimental Set Up for TSA at the CESA Test Facility of the Plataforma Solar de Almerı́a (PSA),” Proc. of the 1994 ASME/JSME/JSES Int. Solar Engineering Conf., pp. 643–650.
Chavez, J. M., Lessley, R. L., and Leon, J., 1994, “Design, Fabrication and Testing of a 250 kWt Knit-Wire Mesh Volumetric Air Receiver.” Proc. of 1994 ASME/JSME/JSES International Solar Engineering Conf., pp. 605–610.
Hellmuth, T. E., Matthews, L. K., Chavez, J. M., and Hale, C. A., 1994, “Performance of a Wire Mesh Solar Volumetric Air Receiver,” Proc. of 1994 ASME/JSME/JSES International Solar Engineering Conf., pp. 573–578.
Pitz-Paal, R., 1996, “Evaluation of the CATREC II Receiver Test,” IEA Solar PACES Technical Report, No. III-2/96.
Téllez F. M., Marcos M. J., and Romero M., 2001, “Design of ‘Sirec-1’ Wire Mesh Open Volumetric Solar Receiver Prototype,” Proc. of 2001 ASME Int. Solar Energy Conf.
Buck, R., Pfänder, M., Schwarzbözl, P., and Téllez, F., 2001, “Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS).” Proc. of 2001 ASME International Solar Energy Conf.
Buck, R., Heller, P., and Koch, H., 1996, “Receiver Development for a Dish-Brayton System,” Proc. of ASME Solar Engineering 1996, Solar Energy Conf., pp. 91–96.
Buck,  R., Abele,  M., , 1994, “Development of a Volumetric Receiver-Reactor for Solar Methane Reforming,” ASME J. Sol. Energy Eng., 116, p. 449.
Tamme,  R., Buck,  R., Epstein,  M., Fisher,  U., and Sugarmen,  C., 2001, “Solar Upgrading of Fuels for Generation of Electricity,” ASME J. Sol. Energy Eng., 123, pp. 160–163.
Carotenuto,  A., Reale,  F., Ruocco,  G., Nocera,  U., and Bonomo,  F., 1993, “Thermal Behavior of a Multi-Cavity Volumetric Solar Receiver: Design and Test Results.” Sol. Energy, 50(2), pp. 113–121.
Hoffschmidt, B., Pitz-Paal, R., Böhmer, M., Fend, T., and Rietbrock, P., 1999, “200 kWth Open Volumetric Air Receiver (HlTRec) of DLR reached 1000°C Average Outlet Temperature at PSA,” Journa de Physique IV, 9 , Proc. of 9th Int. Symp. on Solar Thermal Concentrating Technologies, pp. 551–556.
Hoffschmidt, B., Fernández, V., Konstandopoulos, A. G., Mavroidis, I., Romero, M., Stobbe, P., and Téllez, F., 2001, “Development of Ceramic Volumetric Receiver Technology,” 5th Cologne Solar Symp., 21.06.200.
Kribus,  A., Ries,  H., and Spirkl,  W., 1996, “Inherent Limitations of Volumetric Solar Receivers,” ASME J. Sol. Energy Eng., 118, pp. 151–155.
Buck, R., 2000, “Massenstrom-Instabllitaten bei volumetrischen Receiver-Reaktoren,” VDI, Fortschritt-Berichte, Reihe 3, Nr. 648, Duesseldorf.
Pitz-Paal,  R., Hoffschmidt,  B., Böhmer,  M., and Becker,  M., 1996, “Experimental and Numerical Evaluation of the Performance and Flow Stability of Different Types of Open Volumetric Absorbers Under Non-Homogeneous Irradiation,” Sol. Energy, 60(3/4), pp. 135–159.
Casals, X. G., and Ajona, J. I., 1999, “The Duct Selective Volumetric Receiver: Potential for Different Selectivity Strategies and Stability Issues,” 1999 ISES Solar World Congress, pp. 1409–1417.
Ballestrı́n, J., 2001, “Direct Heat-Flux Measurement System (MDF) for Solar Central Receiver Evaluation,” Ciemat’ Tech. Report, ISSN: 1135-9420. Ed. Ciemat, April, 2001.
Kröger-Vodde, A., and Holländer, A., 1998, “CCD Flux Measurement System PROHERMES,” 9th SolarPACES Int. Symp. on Solar Thermal Concentrating Technologies Font-Romeu (France), June 22–26, France and Journal de Physique IV (Proceedings) 9 , Pr 3, March 1999, Pr3-649.
Becker, M., Cordes, S., and Böhmer, M., 1992, “The Development of Open Volumetric Receivers,” Proc. of 6th Int. Symp. on Solar Thermal Concentrating Technologies, Sept. 1992, pp. 945–952.
Matlab, 2000, “The Language of Technical Computing,” Release 12, MathWorks, Inc., Natik, MA.
Box, G. E. P., and Jenkins, G. M., 1976, Time Series Analysis, Forecasting and Control, Holden-Day Inc., California, Chap. 10 (Transfer function models).


Grahic Jump Location
Schematic drawing of the HiTRec receiver principle
Grahic Jump Location
Cross-section of the HiTRec-II receiver design
Grahic Jump Location
Front view of the HiTRec-II receiver during test campaign
Grahic Jump Location
Schematic drawing for receiver evaluation (Dotted lines: additional scheme for air returns ratio evaluation)
Grahic Jump Location
Comparison of measured (left) and 2-D interpolation (right) thermal maps (in °C) of HiTRec-II absorber in the time in which cup 21 broke. Observe in the left image how the center of cup 21 is highly colder than its boundary. Bottom part of the right image appears cold because the broken sensors were not used for spatial interpolation (The seven broken sensors are marked with “X”).
Grahic Jump Location
Failure of absorber module (C21)
Grahic Jump Location
Example of steady state periods in the time series highlighted for a sunrise to sunset test day (13.02.01)(each square represents 3 min of steady-state conditions)
Grahic Jump Location
Receiver steady-state thermal efficiency versus outlet air temperature and linear regression for resultant efficiencies from both incident solar power measurement systems: MDF (dashed line) and PROHERMES
Grahic Jump Location
Thermal efficiency and average outlet temperature versus the ratio between the power to receiver and air mass flow rate
Grahic Jump Location
Air temperatures and wind speed versus air return ratio




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In