0
TECHNICAL PAPERS

Effect of Turbulence Variation on Extreme Loads Prediction for Wind Turbines

[+] Author and Article Information
Patrick J. Moriarty

National Renewable Energy Laboratory, Golden, CO 80401e-mail: patrick_moriarty@nrel.gov

William E. Holley

Pleasanton, CA 94588e-mail: bill_holley@compuserve.com

Sandy Butterfield

National Renewable Energy Laboratory, Golden, CO 80401e-mail: sandy_butterfield@nrel.gov

J. Sol. Energy Eng 124(4), 387-395 (Nov 08, 2002) (9 pages) doi:10.1115/1.1510137 History: Received March 01, 2002; Revised July 01, 2002; Online November 08, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

IEC/TC88, 1998, 61400-1 Ed. 2 Wind Turbine Generator Systems, Part 1: Safety Requirements, Int. Electrotechnical Commission (IEC).
Veers, P. S., and Butterfield, S., 2001, “Extreme Load Estimation for Wind Turbines: Issues and Opportunities for Improved Practice,” Proc. of 2001 ASME Wind Energy Symp., 37th AIAA Aero. Sci. Mtg., pp. 245–254.
Veers, P. S., and Winterstein, S. R., 1997, “Application of Measured Loads to Wind Turbine Fatigue and Reliability Analysis,” Proc. of 1997 ASME Wind Energy Symp., 35th AIAA Aero. Sci. Mtg., pp. 160–169.
Ronold,  K. O., Wedel-Heinen,  J. W., and Christensen,  C. J., 1999, “Reliability-Based Fatigue Design of Wind-Turbine Rotor Blades,” Eng. Struct., 21, pp. 1101–1114.
Ronold,  K. O., and Larsen,  G. C., 2000, “Reliability-Based Design of Wind-Turbine Rotor Blades Against Failure in Ultimate Loading,” Eng. Struct., 22, pp. 565–574.
Madsen, P. H., Pierce, K., and Buhl, M., 1999, “Predicting Ultimate Loads for Wind Turbine Design,” Proc. of 1999 ASME Wind Energy Symp., 37th AIAA Aero. Sci. Mtg., pp. 355–364.
Fitzwater, L. M., and Winterstein, S. R., 2001, “Predicting Design Wind Turbine Loads From Limited Data: Comparing Random Process and Random Peak Models,” Proc. of 2001 ASME Wind Energy Symp., 39th AIAA Aero. Sci. Mtg., pp. 355–364.
Manuel, L., Veers, P. S., and Winterstein, S. R., 2001, “Parametric Models for Estimating Wind Turbine Fatigue Loads for Design,” Proc. of 2001 ASME Wind Energy Symp., 39th AIAA Aero. Sci. Mtg., pp. 276–287.
Kelley, N. D., 1993, “Full Vector (3-D) Simulation in Natural and Wind Farm Environments Using an Expanded Version of the SNLWIND (Veers) Turbulence Code,” Wind Energy 1993, S. M. Hock (ed.), SED-Vol. 14, ASME.
Buhl, M. L., Jonkman, J. M., Wright, A. D., Wilson, R. E., Walker, S. N., and Heh, P., 2002, FAST User’s Guide, NREL/EL-500-29798, National Renewable Energy Laboratory, Golden, CO.
Larsen, D. C., Ronold, K. O., Jørgensen, H. E., Argyriadis, K., and de Boer, J., 1999, “Ultimate Loading of Wind Turbines,” Risø-R-1111 (EN), Risø National Laboratory, Roskilde, Denmark.
Manuel, L., Kasef, T., Winterstein, S. R., 1999, Moment-based probability modeling and extreme response estimation—The FITS routine Version 1.2, SAND99-2985, Sandia National Laboratories, Albuquerque, NM.
Winterstein,  S. R., and Kashef,  T., 2000, “Moment-Based Load and Response Models with Wind Engineering Applications,” ASME J. Electron. Packag., 122(3), pp. 122–128.

Figures

Grahic Jump Location
Joint probability density function of mean wind speed and turbulence level
Grahic Jump Location
Contour plot of joint probability density function
Grahic Jump Location
Probability of exceedance, Vmean=10 m/s,σ=0.2 m/s
Grahic Jump Location
Probability of exceedance, Vmean=10 m/s,σ=1.8 m/s
Grahic Jump Location
Probability of exceedance, Vmean=10 m/s,σ=5.0 m/s
Grahic Jump Location
Long-term exceedance probability distributions
Grahic Jump Location
Comparison of effect of conditional turbulence distribution on long-term exceedance probability
Grahic Jump Location
Moment threshold value compared to parametric data fit
Grahic Jump Location
Shifted mean value of moment maxima compared to parametric data fit
Grahic Jump Location
Standard deviation of moment maxima compared to parametric data fit
Grahic Jump Location
Skewness of moment maxima compared to parametric data fit
Grahic Jump Location
Number of moment maxima compared to parametric data fit
Grahic Jump Location
Comparison of empirical and parametric long-term loads extrapolation techniques
Grahic Jump Location
Sensitivity of long-term exceedance probability to higher order moments
Grahic Jump Location
Conditional exceedance probability for turbulence levels at Vmean=10 m/s

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In