Concentrated Solar Energy as a Diagnostic Tool to Study Materials Under Extreme Conditions

[+] Author and Article Information
M. Balat-Pichelin, D. Hernandez, G. Olalde, B. Rivoire, J. F. Robert

Institut de science et de génie des Matériaux et Procédés (IMP-CNRS), BP 5, Odeillo, 66125 Font-Romeu Cedex, France

J. Sol. Energy Eng 124(3), 215-222 (Aug 01, 2002) (8 pages) doi:10.1115/1.1488164 History: Received February 01, 2001; Revised February 01, 2002; Online August 01, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Scott, C. D., 1981, “Catalytic Recombination of Nitrogen and Oxygen on High-Temperature Reusable Surface Insulation,” Aerothermodynamics and Planetary Entry-Progress in Astronautics and Aeronautics, A. L. Crosbie (ed.), 77 , pp. 192–212.
Jumper,  E. J., and Seward,  W. A., 1994, “Model for Oxygen Recombination on Silicon Dioxide Surfaces,” J. Thermophys. Heat Transfer, 8(3), pp. 460–465.
Balat,  M. J. H., 1996, “Determination of the Active-to-Passive Transition in the Oxidation of Silicon Carbide in Standard and Microwave-Excited Air,” J. Eur. Ceram. Soc., 16, pp. 55–62.
Balat,  M., Czerniak,  M., and Badie,  J. M., 1999, “Ceramics Catalysis Evaluation at High Temperature Using Thermal and Chemical Approaches,” J. Spacecr. Rockets, 36(2), pp. 273–279.
Lacombe,  A., and Lacoste,  M., 1994, “Investigation of C/SiC Breaking-Point Under Arc Jet Environment at NASA-JSC,” High Temperature Chemical Processes, 3, pp. 285–296.
Eriksson,  G., 1975, “Thermodynamics Studies of High Temperature Equilibria,” Chem. Scr., 8, pp. 100–103.
Balat,  M., Berjoan,  R., Pichelin,  G., and Rochman,  D., 1998, “High-Temperature Oxidation of Sintered Silicon Carbide Under Pure CO2 at Low Pressure:Active-Passive Transition,” Appl. Surf. Sci., 133, pp. 115–123.
Balat,  M., and Berjoan,  R., 2000, “Oxidation of Sintered Silicon Carbide Under Microwave-Induced CO2 Plasma at High Temperature:Active-Passive Transition,” Appl. Surf. Sci., 161, pp. 434–442.
Balat,  M., Czerniak,  M., and Badie,  J. M., 1997, “Thermal and Chemical Approaches for Oxygen Catalytic Recombination Evaluation on Ceramic Materials at High Temperature,” Appl. Surf. Sci., 120, pp. 225–238.
Nasuti,  F., Barbato,  M., and Bruno,  C., 1996, “Material-Dependent Catalytic Recombination Modeling for Hypersonic Flows,” J. Thermophys. Heat Transfer, 10(1), pp. 131–136.
Daiss,  A., Frühauf,  H. H., and Messerschmid,  E. W., 1997, “Modeling of Catalytic Reactions on Silica Surfaces with Consideration of Slip Effects,” J. Thermophys. Heat Transfer, 11(3), pp. 346–352.
Coburn,  J. W., and Chen,  M., 1980, “Optical Emission Spectroscopy of Reactive Plasmas: A Method for Correlating Emission Intensities to Reactive Particle Density,” J. Appl. Phys., 51, pp. 3134–3136.
Granier,  A., Chéreau,  D., Henda,  K., Safari,  R., and Leprince,  P., 1994, “Validity of Actinometry to Monitor Oxygen Atom Concentration in Microwave Discharges Created by Surface Wave in O2-N2 Mixtures,” J. Appl. Phys., 75, pp. 104–114.
Pagnon,  D., Amorim,  J., Nahorny,  J., Touzeau,  M., and Vialle,  M., 1995, “On the Use of Actinometry to Measure the Dissociation of O2 DC Glow Discharges: Determination of the Wall Recombination Probability,” J. Appl. Phys., J. Phys. D, 28, pp. 1856–1868.
Booth,  J. P., Joubert,  O., Pelletier,  J., and Sadeghi,  N., 1991, “Oxygen Atoms Actinometry Reinvestigated:Comparison with Absolute Measurements by Resonance Absorption at 130 nm,” J. Appl. Phys., 69, pp. 618–626.
Cacciatore,  M., Rutigliano,  M., and Billing,  G. D., 1999, “Eley-Rideal and Lamgmuir-Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces,” J. Thermophys. Heat Transfer, 13(2), pp. 195–203.
Kim,  Y. C., and Boudart,  M., 1991, “Recombination of O, N and H Atoms on Silica: Kinetics and Mechanism,” Langmuir, 7, pp. 2999–3005.
Rakich, J. V., Stewart, D. A., and Lanfranco, M. J., 1982, “Results of a Flight Experiment on the Catalytic Efficiency of the Space Shuttle Heat Shield,” AIAA Paper 82-0944.
Stewart, D. A., Rakich, J. V., and Lanfranco, M. J., 1983, “Catalytic Surface Effects on Space Shuttle Thermal Protection System During Earth Entry of Flights STS-2 Through STS-5,” Tech. Report, NASA CP-2283, pp. 827–845.
Deutschmann,  D., Riedel,  U., and Warnatz,  J., 1995, “Modeling of Nitrogen and Oxygen Recombination on Partial Catalytic Surfaces,” ASME J. Heat Transfer, 117, pp. 495–501.
Wiley,  R. J., 1993, “Comparison of Kinetics Models for Atom Recombination on High-Temperature Reusable Surface Insulation,” J. Thermophys. Heat Transfer, 7(1), pp. 55–62.
Kolodziej, P., and Stewart, D. A., 1987, “Nitrogen Recombination on High-Temperature Reusable Surface Insulation and the Analysis of its Effect on Surface Catalysis,” AIAA paper, 87–1637.
Paulmier,  T., Balat-Pichelin,  M., Le Quéau,  D., Berjoan,  R., and Robert,  J. F., 2001, “Physico-Chemical Behavior of Carbon Materials Under High Temperature and Ion Irradiation,” Appl. Surf. Sci., 180, pp. 227–245.
Millard, J. M., Miyake, R. N., Dirling, R. B., Rolfo, A., and Royère, C., 1983, “Starprobe Thermal Shield Evolution,” Proc. Int. Symposium on Environmental & Thermal Systems for Space Vehicles, Toulouse (France), ESA SP-200 (European Space Agency), pp. 531–560.
Randolph,  J., Ayon,  J., , 1999, “The Solar Probe Heat Shield Antenna Materials Characterization,” Carbon, 37, pp. 1731–1739.
Hernandez,  D., Antoine,  D., Olalde,  G., Gineste,  J. M., and Clément,  M., 1999, “Optical Fibre Reflectometer Coupled with a Solar Concentrator to Determine Solar Reflectivity and Absorptivity at High Temperature,” ASME J. Sol. Energy Eng., 121, pp. 31–35.
Hernandez,  D., Olalde,  G., Beck,  A., and Milcent,  E., 1995, “Bi-Color Pyro-Reflectometer Using an Optical Fibre Probe,” Rev. Sci. Instrum., 66(12), pp. 5548–5551.
Markham,  J. R., Lewandowski,  A., , 1996, “FT-IR Measurements of Emissivity and Temperature During High Flux Processing,” ASME J. Sol. Energy Eng., 118, pp. 20–29.
Halpern,  B., and Rosner,  D. E., 1978, “Chemical Energy Accommodation at Catalyst Surfaces,” J. Chem. Soc. A, 74, pp. 1883–1912.


Grahic Jump Location
MESOX experimental set-up: 1) silica vessel, 2) CaF2 viewports, 3) sample, 4) flowmeter, 5) pressure regulator, 6) vacuum pump, 7) pressure gauge, 8) microwave generator, 9) water-cooled waveguide, 10) shutter, 11) fixed mirrors, 12) rotating mirror, and 13) optical pyrometer
Grahic Jump Location
Theoretical and experimental transitions in the oxidation of sintered SiC under molecular CO2 (Exp. CO2) and microwave-excited CO2 (Exp. Diss. CO2): total CO2 pressure versus reciprocal temperature. The experimental points obtained under molecular CO2 are not shown for a better view of the results obtained under microwave-excited CO2.
Grahic Jump Location
SEM micrographs (magnification×2000) of a SiC sample before treatment under CO2 plasma; R: sample under passive oxidation with a passive silica layer; M and T: samples under active oxidation with very damaged SiC surfaces or with perforated silica layers.
Grahic Jump Location
Thermal recombination flux transferred to the surface (β⋅qrec) versus front-face temperature for different ceramic oxide materials at a total air pressure of 200 Pa
Grahic Jump Location
Atomic oxygen recombination coefficient γ for SiO2 β-cristobalite formed on sintered SiC and for SiO2 quartz versus reciprocal temperature. The other points are data obtained on RCG (Reaction Cured Glass) coating developed by NASA 1192122.
Grahic Jump Location
MEDIASE test facility: 1) hemispherical silica window, 2) water-cooled front shield, 3) water-cooled sample holder, 4) optical fiber, 5) 3-mirrors goniometer, 6) quartz crystal microbalance, 7) viewport, 8) pyrometer, 9) spectroradiometer, 10) mass spectrometer, 11) UV source, and 12) ion gun.
Grahic Jump Location
Experimental average mass loss rate versus heating time at 2400°K for two different C/C materials A and B. The dotted line is the maximal value given by the JPL (Jet Propulsion Laboratory, CA).
Grahic Jump Location
Experimental mass spectrum for a composite at 2100°K irradiated by protons (H+, 2 keV, 5×1016ions m−2s−1, 45° incidence).
Grahic Jump Location
Total directional emissivity of a carbon/carbon material at different temperatures.
Grahic Jump Location
DISCO device: A) water-cooled fiber-holder, B) reflectometer, C) pyroreflectometer, D) computer, E) concentrated solar radiation, F) specimen, G) reflectivity standard, H) control optical fiber, and J) displacement device.
Grahic Jump Location
a) Evolution of the normal normal reflectivity during the oxidation of “Narloy” with T: temperature and other data: reflectivity at 1.55 and 1.30 μm. b) details of a) between 0 and 2.4 mn
Grahic Jump Location
Estimated thickness of the oxide layer of “Narloy” versus time




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In