0
TECHNICAL PAPERS

An Update on Solar Central Receiver Systems, Projects, and Technologies

[+] Author and Article Information
Manuel Romero

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense, 22, E 28040 Madrid, Spaine-mail: romero@ciemat.es

Reiner Buck

Deutsches Zentrum für Luft- und Raumfahrt, Institut fuer Technische Thermodynamik, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germanye-mail: reiner.buck@dlr.de

James E. Pacheco

Sandia National Laboratories, Solar Thermal Technology Department, PO Box 5800, M/S 0703, Albuquerque, NM 87185-0703e-mail: jepache@sandia.gov

J. Sol. Energy Eng 124(2), 98-108 (Apr 24, 2002) (11 pages) doi:10.1115/1.1467921 History: Received September 01, 2001; Revised January 01, 2002; Online April 24, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Becker, M., Macias, M., and Ajona, J. I., 1996, “Solar Thermal Power Stations,” The Future for Renewable Energy: Prospects and Directions, EUREC-Agency, ed., James&James Science Publishers, London, pp. 135–153.
Sizmann, R., 1991, “Solar Radiation Conversion.” Solar Power Plants, C. J. Winter, R. L. Sizmann, and L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 17–83.
Mancini, T. R., Kolb, G. J., and Prairie, M., 1997, “Solar Thermal Power,” Advances in Solar Energy: An Annual Review of Research and Development, 11 , Karl W. Boer, ed., American Solar Energy Society, Boulder, CO, pp. 1–42.
Romero,  M., Marcos,  M. J., Téllez,  F. M., Blanco,  M., Fernández,  V., Baonza,  F., and Berger,  S., 2000, “Distributed Power from Solar Tower Systems: A MIUS Approach,” Sol. Energy, 67(4-6), pp. 249–264.
Kolb,  G. J., 1998, “Economic Evaluation of Solar-Only and Hybrid Power Towers Using Molten-Salt Technology,” Sol. Energy, 62(1), pp. 51–61.
DeMeo, E. A., and Galdo, J. F., 1997, “Renewable Energy Technology Characterizations,” TR-109496 Topical Report, December 1997, U.S. DOE-Washington and EPRI, Palo Alto, CA.
Falcone, P. K., 1986, “A Handbook for Solar Central Receiver Design,” SAND86-8009, Sandia National Laboratories, Livermore, CA.
Grasse, W., Hertlein, H. P., and Winter, C. J., 1991, “Thermal Solar Power Plants Experience.” Solar Power Plants, C. J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 215–282.
“Centrales à Tour: Conversion Thermodynamique de l’Energie Solaire,” 1982, Entropie, 103, pp. 1–115.
Radosevich,  L. G., and Skinrood,  A. C., 1989, “The Power Production Operation of Solar One: The 10 MWe Solar Thermal Central Receiver Pilot Plant,” ASME J. Sol. Energy Eng., 111, pp. 144–151.
Pacheco, J. E., and Gilbert, R., 1999, “Overview of Recent Results of the Solar Two Test and Evaluations Program,” In Renewable and Advanced Energy Systems for the 21st Century RAES’99, April, Maui, Hawaii, pp. RAES99–7731, R. Hogan, Y. Kim, S. Kleis, D. O’Neal, and T. Tanaka, eds., ASME, New York.
Chavez, J. M., Kolb, G. J., and Meinecke, W., 1993, “Second Generation Central Receiver Technologies-A Status Report.” M. Becker, and P. C. Klimas, eds., Verlag C. F. Müller GmbH, Karlsruhe, Germany.
Blake, F. A., Gorman, D. N., and McDowell, J. H., 1984, “ARCO Central Receiver Solar Thermal Enhanced Oil Recovery Project,” Thermo-Mechanical Solar Power Plants, Proc. of 2nd Int. Workshop on the Design, Construction, and Operation of Solar Central Receiver Projects, Varese, Italy, June 4–8, 2 , pp. 365–383.
Epstein,  M., Liebermann,  D., Rosh,  M., and Shor,  A. J., 1991, “Solar testing of 2 MW (th) Water/Steam Receiver at the Weizmann Institute Solar Tower,” Sol. Energy Mater., 24, pp. 265–278.
Ruiz,  V., Silva,  M., and Blanco,  M., 1999, “Las Centrales Energéticas Termosolares,” Energı́a, 6(XXV), pp. 47–55.
Romero,  M., Fernández,  V., Sánchez,  M., 1999, “Optimization and Performance of an Optically Asymmetrical Heliostat Field,” J. Phys. IV, 9(Pr3), pp. 71–76.
Silva,  M., Blanco,  M., and Ruiz,  V., 1999, “Integration of Solar Thermal Energy in a Conventional Power Plant: The COLON SOLAR Project,” J. Phys. IV, 9(Pr3), pp. 189–194.
Kelly, B., and Singh, M., 1995, “Summary of the Final Design for the 10 MWe Solar Two Central Receiver Project,” Solar Engineering: 1995, ASME, 1 , p. 575.
Pacheco, J. E., Reilly, H. E., Kolb, G. J., and Tyner, C. E., 2000, “Summary of the Solar Two Test and Evaluation Program,” Proc. of Renewable Energy for the New Millennium, Sydney, Australia, March, pp. 1–11.
Zavoico, A. B., Gould, W. R., Kelly, B. D., Grimaldi, I., and Delegado, C., 2001, “Solar Power Tower (SPT) Design Innovations to Improve Reliability and Performance-Reducing Technical Risk and Cost,” Proc. of Forum 2001 Conf., April, Washington, DC.
Barth,  D. L., Pacheco,  J. E., Kolb,  W. J., and Rush,  E. E., 2002, “Development of a High-Temperature, Long-Shafted, Molten-Salt Pump for Power Tower Applications,,” ASME J. Sol. Energy Eng., 124(2), pp. 170–175.
Hoffschmidt, B., 1997, Vergleichende Bewertung verschiedener Konzepte Volumetrischer Strahlungsempfänger, DLR Forschungsbericht pp. 97–35.
Becker, M., and Boehmer, M., 1989, GAST: The Gas Cooled Solar Tower Technology Program, Springer Verlag, Berlin Heidelberg.
Becker, M., Cordes, S., and Böhmer, M., 1992, “The Development of Open Volumetric Receivers,” Proc. of 6th Int. Symp. on Solar Thermal Concentrating Tech., Sept–Oct. CIEMAT, ed., Madrid, Spain, II , pp. 945–952.
Hoffschmidt, B., Fernández, V., Konstandopoulos, A. G., Mavroidis, I., Romero, M., Stobbe, P., and Téllez, F. 2001, “Development of Ceramic Volumetric Receiver Technology,” Proc. of 5th Cologne Solar Symp., June 2001; K.-H. Funken and W. Bucher, eds. Forschungsbericht 2001-10, DLR-Cologne, Germany, pp. 51–61.
Fricker H., 1985, “Studie über die Möglichkeiten eines Alpenkraftwerkes,” Bull. SEV/VSE, 76 , pp. 10–16.
Schmitz-Goeb, M., and Keintzel, G., 1997, “The Phoebus Solar Power Tower,” Proc. of 1997 ASME Int. Solar Energy Conf., April, Washington D.C., D. E. Claridge and J. E. Pacheco, eds., pp. 47–53.
Grasse,  W., 1991, “PHOEBUS-International 30 MWE Solar Tower Plant,” Sol. Energy Mater., 24, pp. 82–94.
Haeger, M., 1994, “Phoebus Technology Program: Solar Air Receiver (TSA),” PSA Tech. Report: PSA-TR02/94, July 1994.
Romero, M., Marcos, M. J., Osuna, R., and Fernández, V., 2000, “Design and Implementation Plan of a 10 MW Solar Tower Power Plant based on Volumetric-Air Technology in Seville (Spain),” Solar Engineering 2000-Proc. of ASME Int. Solar Energy Conf., Madison, WI, June, J. E. Pacheco and M. D. Thornbloom, eds., ASME, New York.
Mancini, T. R., 2000, “Catalog of Solar Heliostats,” SolarPACES Tech. Report No. III-1/00, June 2000, T. R. Mancini, ed., Sandia National Labs., Albuquerque, NM DLR, Cologne, Germany.
Price, H. W., Whitney, D. D., and Beebe, H. I., 1996, “SMUD Kokhala Power Tower Study,” Proc. of 1996 Int. Solar Energy Conf., San Antonio, TX.
Kribus,  A., Zaibel,  R., Carrey,  D., Segal,  A., and Karni,  J., 1997, “A solar-driven combined cycle power plant,” Sol. Energy, 62, pp. 121–129.
Buck R., Lüpfert, E., and Téllez, F., 2000, “Receiver for Solar-Hybrid Gas Turbine and CC Systems (REFOS),” Proc. 10th SolarPACES Int. Symp. Solar Thermal 2000, March, Sydney, Australia, pp. 95–100.
Kribus, A., 1996, “High-Concentration Solar Energy Optics,” Proc. of Sun Day Symp., Weizmann Institute of Science, Rehovot, Israel, May.
Schwarzbözl, P., Pitz-Paal, R., Meinecke, W., and Buck, R., 2000, “Cost-Optimized Solar Gas Turbine Cycles Using Volumetric Air Receiver Technology,” Proc. 10th SolarPACES Int. Symp. Solar Thermal 2000, March, Sydney, Australia, pp. 171–177.
Buck,  R., Bräuning,  T., Denk,  T., Pfänder,  M., Schwarzbözl,  P., and Tellez  F., 2001, “Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS),” ASME J. Sol. Energy Eng., 124(1), pp. 2–9.
Tamme,  R., Buck,  R., Epstein,  M., Fisher,  U., and Sugarmen,  C., 2001, “Solar Upgrading of Fuels for Generation of Electricity,” ASME J. Sol. Energy Eng., 123(2), pp. 160–163.
Enermodal Engineering Ltd., 1999. “Cost Reduction Study for Solar Thermal Power Plants. Final Report.” Prepared by Enermodal Engineering Ltd. in association with Marbek Resource Consultants Ltd., by contract of World Bank/GEF, Washington D.C., May 5, 1999.
Tyner, C. E., Kolb, G. J., Geyer, M., and Romero, M., 2001, “Concentrating Solar Power in 2001: An IEA SolarPACES Summary of Present Status and Future Prospects,” International Energy Agency, Solar PACES, May 2001.
Garcı́a, G., Egea, A., Romero, M., and Gázquez, J. A., 2000, “The Stand-Alone Heliostat First Operation Results,” Proc. Solar Thermal 2000—Renewable Energy for the New Millennium Conf., Sydney, Australia, March, H. Kreetz, K. Lovegrove, and W. Meike, eds., Australian and New Zealand Solar Energy Society, Sydney, pp. 165–170.
Becker, M., and Vant-Hull L. L., 1991, “Thermal Receivers.” Solar Power Plants, C. J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 163–198.
Garcı́a-Martin,  F. J., Berenguel,  M., Valverde,  A., and Camacho,  E. F., 1999, “Heuristic Knowledge-Based Heliostat Field Control for the Optimization of the Temperature Distribution in a Volumetric Receiver,” Sol. Energy, 66(5), pp. 355–369.
Kolb, G. J., and Saluta, D., 1999, “Automatic Control of the Solar Two Receiver,” Proc. of Renewable and Advanced Energy Systems for the 21st Century RAES’99, April, Maui, Hawaii, pp. RAES99-7707(CD-Rom), R. Hogan, Y. Kim, S. Kleis, D. O’Neal, and T. Tanaka, eds., ASME, New York, 1999.

Figures

Grahic Jump Location
Aerial views of the plants Solar Two of 10 MW in California (superior left) and CESA-1 of 1.2 MW in Almeria, Spain (right)
Grahic Jump Location
Diagram of SOLGAS scheme (Source: Final Project Report to the EC)
Grahic Jump Location
Schematic of a Molten Salt Power Tower
Grahic Jump Location
Influence of heat storage sizing on normalized energy costs for molten salt CRS plants. For annual capacity factors of 65% the lowest cost is obtained (Source: G. Kolb-Sandia National Labs).
Grahic Jump Location
Absorption and heat transfer of tubular and volumetric receivers (after 22)
Grahic Jump Location
Process flow diagram of the PS10 solar tower power plant
Grahic Jump Location
Solar air preheating system
Grahic Jump Location
Modular receiver arrangement
Grahic Jump Location
Scheme of a solar reforming power plant
Grahic Jump Location
Strategy for penetration in the market of the solar tower power plants. The figure represents predicted LEC (in hybrid plants only the solar portion) versus time.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In