0
TECHNICAL PAPERS

Photochemical Effects in Carbide Synthesis of d-group Transition Metals (Ti, Zr; V, Nb, Ta; Cr, Mo, W) in a Solar Furnace at PSA (Plataforma Solar de Almerı́a)

[+] Author and Article Information
José Rodrı́guez, Diego Martı́nez

Plataforma Solar de Almerı́a, Centro Europeo de Ensayos de Energı́a Solar, Centro de Investigaciones Energeticas Medioambientales y Tecnologicas P.O. Box 22, 04200 Tabernas, Spain

Luı́s Guerra Rosa, Jorge Cruz Fernandes, Pedro Miguel Amaral

Instituto Superior Técnico, Departamento de Engenharia de Materiais Av. Rovisco Pais, 1049-001 Lisboa Portugal

Nobumitsu Shohoji

Instituto Nacional de Engenharia e Tecnologia Industrial, Departamento de Materiais e Tecnologias de Produção Estrada do Paço do Lumiar, 1649-038 Lisboa Portugale-mail: Nobumitsu.Shohoji@mail.ineti.pt

J. Sol. Energy Eng 123(2), 109-116 (Nov 01, 2000) (8 pages) doi:10.1115/1.1350565 History: Received April 01, 2000; Revised November 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cruz Fernandes,  J., Guerra Rosa,  L., Martı́nez,  D., Rodrı́guez,  J., and Shohoji,  N., 1998,“Influence of Gas Environment on Synthesis of Silicon Carbide through Reaction between Silicon and Amorphous Carbon in a Solar Furnace at P.S.A. (Plataforma Solar de Almerı́a),” J. Ceram. Soc. Jpn., 106, pp. 839–841.
Martı́nez,  D., Rodrı́guez,  J., Guerra Rosa,  L., Cruz Fernandes,  J., and Shohoji,  N., 1999, “Influence of Gas Environment on Synthesis of Silicon Carbide and Some Carbides and Carbonitrides of d-group Transition Metals through Reaction between Metal Powders and Amorphous Carbon Powders in a Solar Furnace at P.S.A. (Plataforma Solar de Almerı́a),” J. Phys. IV, 9, Proceedings 3, pp. 405–410.
Shohoji,  N., Guerra Rosa,  L., Cruz Fernandes,  J., Martı́nez,  D., and Rodrı́guez,  J., 1999, “Catalytic Acceleration of Graphitization of Amorphous Carbonduring Synthesis of Tungsten Carbide from Tungsten and Excess Amorphous Carbon in a Solar Furnace,” Mater. Chem. Phys., 58, pp. 172–176.
Guerra Rosa,  L., Cruz Fernandes,  J., Amaral,  P. M., Martı́nez,  D., Rodrı́guez,  J., and Shohoji,  N., 1999, “Photochemically Promoted Formation of Higher Carbide of Molybdenum through Reaction between Metallic Molybdenum Powders and Graphite Powders in a Solar Furnace,” Int. J. Refract. Met. Hard Mater., 17, pp. 351–356.
Shohoji,  N., Amaral,  P. M., Cruz Fernandes,  J., Guerra Rosa,  L., Martı́nez,  D., and Rodrı́guez,  J., 2000, “Catalytic Graphitization of Amorphous Carbon during Solar Carbide Synthesis of VI a Group Metals (Cr, Mo, and W),” Mater. Trans., JIM, 41, pp. 246–249.
Cruz Fernandes,  J., Amaral,  P. M., Guerra Rosa,  L., Martı́nez,  D., Rodrı́guez,  J., and Shohoji,  N., 1999,“X-ray Diffraction Characterisation of Carbide and Carbonitride of Ti and Zr Prepared through Reaction between Metal Powders and Carbon Powders (Graphitic or Amorphous) in a Solar Furnace,” Int. J. Refract. Met. Hard Mater., 17, pp. 437–443.
Amaral,  P. M., Cruz Fernandes,  J., Guerra Rosa,  L., Martı́nez,  D., Rodrı́guez,  J., and Shohoji,  N., 2000, “Carbide Formation of Va-group Metals (V, Nb and Ta) in a Solar Furnace,” Int. J. Refract. Met. Hard Mater., 18, pp. 47–53.
Farinha Mendses,  J., Collares-Pereira,  M., Martı́nez,  D., Rodrı́guez,  J., and Alarcón Padilla,  D., 1999,“Testing Results of a Second Stage Concentrator Designed for the Solar Furnace of Plataforma Solar de Almerı́a,” J. Phys. IV, 9, Proceedings 3, pp. 569–574.
Katsura,  M., and Nomura,  T., 1974, “Influence of Energetically Active Carbon on Thermodynamics and Phase Relationship of U-C-N System,” J. Nucl. Mater., 51, pp. 63–68.
Katsura, M., Shohoji, N., Yato, T., Nomura, T., and Sano, T., 1975, “Determining the Free Energy of Actinide Carbonitrides Using Amorphous Carbons Having an Arbitrary Degree of Graphitization,” in Thermodynamics of Nuclear Materials 1974, Vienna, IAEA (International Atomic Energy Agency), Vol. II, pp. 347–354.
Marcelo,  T., and Shohoji,  N., 1986, “Influence of Amorphous Carbon on the Equilibrium Composition of Hypostoichiometric Monocarbides, TiCx and VCx(x<1),” Mater. Chem. Phys., 15, pp. 61–74.
Storms, E. K., 1967, The Refractory Carbides, Academic Press, New York and London.
Keller,  V., Wehrer,  P., Garin,  F., Ducros,  R., and Maire,  G., 1995, “Catalytic Activity of Bulk Tungsten Carbide for Alkane Reforming, I. Characterization and catalytic activity of reforming of hexane isomers in the absence of oxygen,” J. Catal., 153, pp. 9–16.
Keller,  V., Wehrer,  P., Garin,  P., Ducros,  R., and Maire,  G., 1997, “Catalytic Activity of Bulk Tungsten Carbide for Alkane Reforming, II. Catalytic activity of tungsten carbides modified by oxygen,” J. Catal., 166, pp. 125–135.
Garin,  F., Keller,  V., Ducros,  R., Muller,  A., and Maire,  G., 1997, “Catalytic Activity of Bulk Tungsten Carbide for Alkane Reforming, III. Reaction mechanisms and kinetic model,” J. Catal., 166, pp. 136–147.
Shohoji,  N., Marcelo,  T., and Katsura,  M., 1990, “Influence of Metastable Species (Non-graphitic Carbon and Ammonia Gas) in the Reactants on the Composition of the Reaction Products (Carbide, Carbonitride and Nitride),” Solid State Ionics, 38, pp. 187–194.
Katsura, M., Hirota, M., Miyake, M., and Hamada, K., 1992, “Evaluation of Activities of Carbons in Chemical Equilibrium with Uranium Carbonitride,” Tanso, No. 152, pp. 84–90.
Katsura,  M., 1991, “A Thermodynamic Analysis of Nitrogen-rich Uranium Sesquinitride Formation by the Reaction of Uranium with Ammonia,” Solid State Ionics, 49, pp. 225–231.
Katsura,  M., 1992, “Thermodynamics of Nitride and Hydride Formation by the Reaction of Metals with Flowing Ammonia NH3,” J. Alloys Compd., 182, pp. 91–102.
Yoshizawa,  H., Shohoji,  N., Katsura,  M., andSano,  T., andYato,  T., 1977“Nitrierung des Metalls bzw. Metallcarbides unter Ammoniakstrom,”Technol. Rep. Osaka Univ, 27, pp. 363–370.
Katsura,  M., and Serizawa,  H., 1992, “Formation of a Nitrogen-rich α-U2N3+x Phase by the Reaction of Uranium with a Stream of Ammonia,” J. Alloys Compd., 187, pp. 389–399.
Hirota,  M., Furutani,  G., Katsura,  M., and Miyake,  M., 1993, “On the Formation of Nitrogen-rich Sesquinitride by the Reaction of Uranium Mononitride with NH3,” J. Alloys Compd., 193, pp. 104–106.
Urabe,  T., Takahashi,  K., Katsura,  M., and Miyake,  M., 1993, “Equilibrium N2 Pressure-Temperature-Composition Relationships for α- U2N3+x Phase,” J. Alloys Compd., 193, pp. 122–124.
Katsura,  M., Miyake,  M., and Serizawa,  H., 1993, “Some Problems in Nonstoichiometry of α-Uranium Sesquinitride,” J. Alloys Compd., 193, pp. 389–399.
Katsura,  M., Nishimaki,  K., Nakagawa,  T., and Takahashi,  K., 1998, “The Formation of Uranium Sesquinitride by Reactions of U or UH3 with a N2–H2 Mixture,” J. Alloys Compd., 271–273, pp. 662–665.
Nishimaki,  K., Nakagawa,  T., Yamamoto,  T. A., and Katsura,  M., 1998, “Equilibrium between Flowing NH3 and Synthesized FeNx at Various Positions along Flow of Reaction Gas,” Technol. Rep. Osaka Univ., 48, pp. 153–156.
Nishimaki,  K., Ohmae,  S., Nakagawa,  T., Yamamoto,  T. A., and Katsura,  M., 1998, “Selective Formation of Iron Nitrides by Ammonia Flow Method,” Technol. Rep. Osaka Univ., 48, pp. 333–336.
Katsura,  M., Nishimaki,  K., Nakagawa,  T., Yamamoto,  T. A., Hirota,  M., and Miyake,  M., 1998, “Thermodynamics of the Formation of CH4 by the Reaction of Carbon Materials by a Stream of NH3,” J. Nucl. Mater., 258–263, pp. 839–842.
Jehn,  H., and Ettmayer,  P., 1978, “The Molybdenum–Nitrogen Phase Diagram,” J. Less-Common Met., 58, pp. 85–98.

Figures

Grahic Jump Location
Schematic solar furnace configuration at PSA. All solar beam reflecting components are made of silver.
Grahic Jump Location
Schematic cross sectional appearance of reaction chamber (MINIVAC) (reproduced from 1)
Grahic Jump Location
Schematic experimental set-up in the graphite crucible installed in atmosphere-controllable chamber (MiniVac) for solar irradiation (reproduced from 4): A) alumina sheath for thermocouple protection, B) graphite support, C) secondary alumina support, D) thermocouple, and E) cement glue
Grahic Jump Location
Heating/cooling patterns in the solar furnace (a) and in the laboratory electric furnace (b) (reproduced from 7): Heating rate (HR) in the solar furnace was 20°C/min and the cooling rate (CR) immediately after the solar beam cut down about 20°C/min while HR in the electric furnace 6°C/min and CR immediately after the furnace shut down about 6°C/min
Grahic Jump Location
XRD (X-ray diffraction) patterns of the reaction products from VIa-group metals (Cr, Mo and W) mixed with excess free carbon (G or aC) in Ar atmosphere under solar radiation for 30 min (reproduced from 5)
Grahic Jump Location
Mo-C equilibrium phase diagram (reproduced from 12)
Grahic Jump Location
XRD patterns obtained for Ta specimens (reproduced from 7)
Grahic Jump Location
XRD patterns obtained for Si specimens (reproduced from 1): A) 1620°C for 30 min in Ar at 1.5 bar, B) 1650°C for 30 min in N2 at 2 bar, and C) unreacted reference

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In