Solar Thermal Splitting of Zinc Oxide: A Review of Some of the Rate Controlling Factors

[+] Author and Article Information
Jacques Lédé, Enrique Elorza-Ricart, Monique Ferrer

Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, 1 rue Grandville–BP 451, F-54001 NANCY Cedex, France

J. Sol. Energy Eng 123(2), 91-97 (Dec 01, 2000) (7 pages) doi:10.1115/1.1351815 History: Received May 01, 2000; Revised December 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Lédé,  J., and Ferrer,  M., 1999, “Solar Chemical Reactors,” J. Phys. IV, 9, Pr3, pp. 253–258.
Palumbo,  R., Lédé,  J., Boutin,  O., Elorza-Ricart,  E., Steinfeld,  A., Möller,  S., Weindenkaff,  A., Fletcher,  E. A., and Bielicki,  J., 1998, “The Production of Zn from ZnO in a High-Temperature Solar Decomposition Quench Process,” Chem. Eng. Sci., 53, 14, pp. 2503–2519.
Elorza-Ricart,  E., Martin,  P. Y., Ferrer,  M., and Lédé,  J., 1999, “Direct Thermal Splitting of ZnO Followed by a Quench. Experimental Measurement of Mass Balances,” J. Phys. IV, 9, Pr3, pp. 325–330.
Elorza-Ricart,  E., Ferrer,  M., and Lédé,  J., 2000, “Dissociation thermique directe de l’oxyde de zinc para voie solaire,” Entropie, 36, No. 228, pp. 55–59.
Elorza-Ricart, E., 1998, “Dissociation thermique solaire, suivie de trempe, de l’oxyde de zinc,” Diplome d’Etudes Approfondies, ENSIC-INPL-LSGC, Nancy, France.
Noury, N., 1999, “Etude de la condensation du zinc vapeur dans un tube réfrigére,” Diplo⁁me d’Etudes Approfondies, ENSIC-INPL-LSGC, Nancy, France.
Boutin, O., 1996, “Dissociation thermique, suivie de trempe, de l’oxyde de zinc,” Diplo⁁me d’Etudes Approfondies, ENSIC-INPL-LSGC, Nancy, France.
Lédé, J., Elorza-Ricart, E., and Ferrer, M., 1999, “Solar Chemical Reaction Engineering. Application to the Reaction of Direct Thermal Splitting of ZnO followed by a Quench,” 2nd European Congress of Chemical Engineering. Montpellier (France) 5–7 October (1999), Proceedings “Récents Progrès en Génie des Procédés,” G. Glamant, Ed., 13 , No. 71 “Specific Processes and Technologies,” pp. 49–56, Lavoisier, Technique et Documentation, Paris.
Boutin,  O., Ferrer,  M., and Lédé,  J., 1998, “Radiant Flash Pyrolysis of Cellulose—Evidence for the Formation of Short Life Time Intermediate Liquid Species,” J. Anal. Appl. Pyrolysis, 47, pp. 13–31.
Weidenkaff,  A., Steinfeld,  A., Wokaun,  A., Auer,  P. O., Eichler,  B., and Reller,  A., 1999, “Direct Solar Thermal Dissociation of Zinc Oxide: Condensation and Crystallization of Zinc in the Presence of Oxygen,” Sol. Energy, 65, 1 pp. 59–69.
Villermaux,  J., Antoine,  B., Lédé,  J., and Soulignac,  F., 1986, “A New Model for Thermal Volatilization of Solid Particles Undergoing Fast Pyrolysis,” Chem. Eng. Sci., 41, 1, pp. 151–157.
Lédé,  J., 1994, “Reaction Temperature of Solid Particles Undergoing an Endothermal Volatilization. Application to the Fast Pyrolysis of Biomass,” Biomass Bioenergy, 7, Nos. 1–6, pp. 49–60.
Villermaux, J., 1993, “Génie de la réaction chimique. Conception et fonctionnement des réacteurs,” Lavoisier, Technique et Documentation, Paris.
Incropera, F. P., and Devitt, D. P., 1996, Introduction to Heat Transfer, 3rd Ed., Wiley, New York.
Ferrer,  M., and Lédé,  J., 1999, “Modeling of the Quenching in Cylindrical and Annular Reactors,” Sol. Energy, 66, 2, pp. 151–163.
Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelley, K. K., 1973, Selected Values of Thermodynamic Properties of Elements and Oxides, American Society for Metals, New York.
Pankratz, L. B., 1982, Thermodynamic Properties of Elements and Oxides, Bull. U.S. Bur. Mines.
Montassier, N., 1990, “Etude du dépo⁁t des aérosols par thermophorèse dans un écoulement laminaire,” Thèse Université Paris XII, Rapport CEA R5533.
Elorza-Ricart, E., Noury, N., Ferrer, M., and Lédé, J., 2000, “Direct solar thermal splitting of ZnO followed by a quench. Analysis of some of the rate controlling steps,” Presented at the 10th Solar PACES Int. Symp. on Solar Thermal Concentration Technologies, Solar Thermal 2000, Sydney (Australia) 8–10 March.


Grahic Jump Location
Schemes of the 3 experimental set-up used for studying: the thermal splitting of ZnO samples (A); the whole process inside an image furnace (B); the quench phenomena (C)
Grahic Jump Location
Theoretical and experimental variations of the mean ablation velocities (umexp and umth) as a function of the time of irradiation t. The available flux density is 6×106 W m−2.
Grahic Jump Location
Theoretical variations of the mean radial temperature Tm and of the partial zinc pressure PZn as a function of the abscissa z inside the quench zone. Their intersections with the curves representing the saturated zinc partial pressure PZnsat and the zinc solidification temperature TZnsol give respectively the two theoretical abscissa of zinc condensation and solidification (calculations made with two inlet temperatures Tmi:1000 and 1100 K and QAr=4.9×10−5 m3 s−1 STP).
Grahic Jump Location
Conceptual representation of an ideal plug flow reactor including in series the solar section of high temperature ZnO dissociation (D), followed by several subparts of the quench section (Q1, Q2, Q3)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In