0
TECHNICAL PAPERS

Solarthermal Processing: A Review

[+] Author and Article Information
Edward A. Fletcher

Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, MN 55455e-mail: fletcher@tc.umn.edu

J. Sol. Energy Eng 123(2), 63-74 (Nov 01, 2000) (12 pages) doi:10.1115/1.1349552 History: Received October 01, 2000; Revised November 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lede,  J., 1997, “Chimie solaire dans de monde et en France,” Entropie, 204, pp. 47–55.
Trombe, F., 1948, “Perfectionment aux procedes permettant de traiter des substances par accumulation de l’energie apportee par un rayonnement,” Brevet d’invention, depose No. 1,010,525.
Moissan, H., 1897, Le Four Electrique, G. Steinheil, editeur, Paris.
Anon., 1976, “Colloques Internationaux du Centre National de La Recherché Scientifique (CNRS), LXXXV 23–26 Juin, 1958, Applications Thermiques de L’energie Solaire dans le Domaine de la Recherché et de L’industrie, Mont Louis,” Editions du CNRS, 15, quai Anatole-France–75700 Paris.
Trombe, F., and Foex, M., 1958, “Quelques aspects de la Metallurgy au four solaire,” in Colloques Internationaux du Centre National de La Recherché Scientifique (CNRS), LXXXV 23–26 Juin, 1958, Applications Thermiques de L’energie Solaire dans de Domaine de la Recherché et de L’industrie, Mont Louis, Editions du CNRS, 15, quai Anatole-France–75700 Paris. Ref. 4, pp. 343–366.
Trombe,  F., and Foex,  M., 1951, “Essai de metallurgie du chrome par l’hydrogene au four solaire,” Rev. de Metal., XLVIII, pp. 359–362.
Royere,  C., and Trombe,  F., 1968, “Etude au four solaire de la cinetique de la reduction par l’hydrogene du sesquioxyde de chrome pur ou dope,” C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 267, pp. 1275–1278.
Trombe, F., and Foex, M., 1954, “Les differents aspects du traitement de la zircone au four solaire,” Bull. Societe Francaise de ceramique, 25 .
Trombe,  F., and Foex,  M., 1959, “Sur le corindon pur dondu au four solaire,” Bull. Societe Francaise de ceramic, 43, p. 69.
Ducarroir,  M., 1968, “Reactions sur front chaud solaire. Application a la production de polycarbon,” Rev. Hautes Temp. Refract., 5, pp. 89–96.
Trombe,  F., and Ducarroir,  M., 1967, “Production de polycarbone au four solaire,” C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 264, pp. 843–846.
Trombe, F., and Foex, M., 1965, “Sur l’utilisation des techniques de chauffage pour la preparation d’oxydes purs,” Bull. Soc. Chim. Fr., p. 1070.
Trombe,  F., Gion,  Royere C., and Robert ,  J., Juin 14, 1972, “Traitement d’oxydes refractaires au four solaire de 1000kW du CNRS,” C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 1104–1107.
Foex,  M., 1951, “Attaques et traitement de divers mineraux au four solaire,” Rev. Metall., XLVIII 5, pp. 327–341.
Foex, M., 1962, “Dispositifs de traitment a haute temperature comportant l’emploi de chalumeaux a plasma associes ou non avec les fours solaires,” in Colloque sur les Chalumeaux et Fours a Plasma et Leurs Applications, Paris.
Ferrierre, A., 2000 (private communication).
Trombe, F., and Foex, M., 1956, “Quelques aspects du traitement thermique des refractaires des materiaux au four solaire,” (Some considerations on the thermal treatment of refractories (and) materials in a solar furnace), Metaux et corrosion XXXI, pp. 126–139.
Trombe,  F., Foex,  M., and La Blanchetais,  J., 1948, “Sur la fusion continue des substances au four solaire,” (On the continuous fusion of substances in a solar furnace), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 226, p. 83.
Trombe,  F., and Foex,  M., 1957, “Sur une nouvelle methode d’attaque des refractaires en vue de leur analyze,” (On a new method of making refractories tractable for their analysis), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 244, p. 354.
Trombe, F., and Foex, M., 1957, “Traitement par de rayonnement solaire de substances refractaires placees sur plaques metalliques refrigerees,” (Treatment of films of refractory substances mounted on cooled metal surfaces with solar radiation), Bull. Soc. Chim. Fr., p. 534.
Trombe,  F., 1949, “Sur des conditions de traitement des substances au four solaire,” (On the conditions of exposure of substances in a solar furnace), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 228, p. 786.
Trombe,  F., Foex,  M., and La Blanchetais,  J., 1949, “Sur la fusion de l’alumine au four solaire,” (On the fusion of alumina in a solar furnace), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 228, p. 1107.
Trombe,  F., and Foex,  M., 1951, “Essais siderurgiques au four solaire,” (Experiments on the metallurgy of iron and steel in a solar furnace), Rev. de Metall., XLVIII, pp. 353–358.
Trombe,  F., and Foex,  M., 1952, “Fours centrifuges a accumulation d’energie solaire,” (Centrifugal solar energy collecting furnace), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 235, p. 571.
Trombe, F., and Foex, M., 1954, “Utilisation de fours centrifuges pour de traitement par L’energie solaire de substances a haute temperature,” (The use of centrifugal furnaces), Bull. Soc. Chim. Fr., pp. 1315–1322.
Trombe,  F., and Foex,  M., 1955, “Sur un nouveau procede de traitement des metaux a l’aide de l’energie solaire,” (On a new procedure for treating metals with the help of solar energy), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 240, p. 196.
Trombe,  F., and Foex,  M., 1950, “Reduction de la oxyde de chrome Cr2O3 par l’hydrogene au four solaire,” (Reduction of chromic oxide with hydrogen in a solar furnace), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 230, p. 2294.
Ducarroir,  M., 1973, “Types de reactions sur front chand et methodes d’approche thermodynamique des reactions de depot de phases condensees,” (Types of reactions on a (solar heated) hot surface and approaches to the thermodynamics of deposition from a vapor phase), Rev. Hautes Temp. Refract., 10, pp. 217–226.
Colin, F., and Collongues, R., “Utilisation d’une front chaud pour l’elaboration de depots d’oxydes a partir d’une phase vapeur,” (Using a hot irradiated surface for detailed study of oxide deposits near a vapor phase), Rev. Hautes Temp. Refract., pp. 227–229.
Armas,  B., and Trombe,  F., 1971, “Depots en phase vapeur sur front chaud solaire de borures de molybdene et de tungstene par decomposition thermique de melanges d’halogenures,” (Deposition from the vapor phase from on a solar heated hot surface by a thermal decomposition of mixtures of their halides), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 286–289.
Robert,  J. F., 1971, “Les depots de tungstene metallique,” (Metallic tungsten deposits), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 251–254.
Royere,  C., 1971, “Le reduction des oxydes par l’hydrogene a haute temperature. Applicaton au sesquioxyde de chrome,” (The reduction of oxides by hydrogen at high temperature—an applicaton to chromic oxide), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 241–249.
Male,  G., and Trombe,  F., 1971, “La hierarchie thermochimique dans les carbures. Application a la reaction tantale-carbures de terres rares,” (The thermal hierarchy of the carbides. Applicaton to the tantalum-carbides of the rare earths), C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 255–260.
Dhalenne,  G., Revcolevschi,  A., and Collongues,  R., 1971, “Application de la zone verticale a la purification d’oxyde d’aluminum Al2O3,” (Application of zone melting to the purification to aluminum oxide, Al2O3),C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 272, pp. 261–268.
Anon, 2000, “DOE Cancels Billion-Dollar Waste Contract,” Chem. Eng. News, p. 13.
Anon., “Nuclear Sites May be Toxic in Perpetuity, Report Finds,” 2000, NY Times, Aug. 8.
Anon., “Report Many Nuclear Sites will Never be Made Safe,” 2000, Los Angeles Times as quoted in The Minneapolis-Saint Paul Star-Tribune, Aug. 8.
Fletcher,  E. A., 2000, “Solar Energy and the Public Interest,” ASME J. Sol. Energy Eng., 122, pp. 40–41.
Fletcher,  E. A., 1984, “On the thermodynamics of solar energy use,” J. Minnesota Acad. Sci., 49, pp. 30–34.
Fletcher,  E. A., and Moen,  R. L., 1977, “Hydrogen and oxygen from water,” Science, 197, pp. 105–1056.
Abraham,  B. M., and Schreine,  F., 1974, “General Principles Underlying Chemical Cycles Which Thermally Decompose Water into Elements,” Ind. Eng. Chem. Fundam., 13, No. 4, pp. 305–310.
Beghi,  G. E., 1985, “Development of thermochemical and hybrid processes for hydrogen production,” Int. J. Hydrogen Energy, 10, No. 7/8, pp. 432–438.
Ohta,  T., Funk,  J. E., Porter,  J. D., and Tilak,  B. V., 1985, “Hydrogen production from water: Summary of recent research and development,” Presented at the 5th WHEC (World Hydrogen Energy Conference), Int. J. Hydrogen Energy, 10, No. 9, pp. 571–576.
Chao,  R. E., 1974, “Thermochemical Water Decomposition Processes,” Ind. Eng. Chem. Prod. Res. Dev., 13, No. 2, p. 94–101.
Funk,  J. E., and Reinstrom,  R. M., 1968, “Energy requirements for the production of hydrogen from water,” I & E Chem. Proc. Res. Dev., 13, pp. 336–342.
Ner,  G., Nicholas,  J. D., Bockris,  O’M., and McCann,  J. F., 1976, “The photosynthetic production of hydrogen,” Int. J. Hydrogen Energy, 1, p. 45.
Ohta,  T., Askatura,  S., Yamagouchi,  M., and Kamiya,  N., 1976, “Photochemical and thermoelectric utilization of solar energy in a hybrid water splitting system,” Int. J. Hydrogen Energy, 1, p. 113.
Ohta,  T., Kamiya,  N., Ohta,  T., Yamagouchi,  M. N., Otagaw,  T., and Askatura,  A. S., 1978, “System efficiency of a water splitting system synthesized by photochemical and thermoelectric conversion of solar energy,” Int. J. Hydrogen Energy, 3, No. 2, p. 203–208.
Dokiya,  M., and Kotera,  Y., 1976, “Hybrid cycle with electrolysis using Cu-Cl system,” Int. J. Hydrogen Energy, 1, pp. 117–123.
Knoche,  K. F., and Funk,  J. E., 1997, “Entropy, production, efficiency, and economics in the thermochemical generation of synthetic fuels II. The methanol water splitting cycle,” Int. J. Hydrogen Energy, 2, pp. 837–893.
Soliman,  M. A., Conger,  W. L., Carty,  R. H., Funk,  J. E., and Cox,  K. E., 1976, “Hydrogen production via thermochemical cycles based on sulfur chemistry,” Int. J. Hydrogen Energy, 2, pp. 265–270.
Knoche,  K. F., Cremer,  H., Breyswisch,  D., Hegels,  G., Steinborn,  G., and Wuster,  G., 1978, “Electrical and theoretical investigation of thermochemical hydrogen production,” Int. J. Hydrogen Energy, 3, pp. 209–216.
Knoche,  K. F., and Schuster,  P., 1984, “Thermochemical production of hydrogen by a vanadium/chlorine cycle, part 1, an energy and exergy analysis of the process,” Int. J. Hydrogen Energy, 9, pp. 455–772.
Dokiya,  M., Kamayama,  T., and Fukida,  K., 1979, “Thermochemical hydrogen preparation-Part V. A feasibility study of the sulfur iodine cycle,” Int. J. Hydrogen Energy, 4, pp. 267–277.
Bilgen,  E., and Bilgen,  C., 1982, “Solar hydrogen production using two-step thermochemical cycles,” Int. J. Hydrogen Energy, 7, No. 8, pp. 637–644.
Wenthorf,  R. H., and Hanneman,  R. E., 1974, Science, 185, p. 311.
Pangborn, J. B., and Sharer, J. C., 1973, “Hydrogen from Water,” in Hydrogen Energy, T. N. Veziroglu, ed., Plenum, New York, pp. 449–475.
Drell, I. L., and Belles, F. E., 1958, NACA Report 1383, Survey of Hydrogen Combustion Properties, National Advisory Committee for Aeronautics, Washington, D. C.
Lapique,  F., Lede,  J., Villermaux,  J., Cales,  B., Baumard,  J. F., Anthony,  A. M., Abdul-Aziz,  G., Puechberty,  D., and Ledoux,  M., 1983, “Recherches sur la production d’hydrogene par dissociation thermique directe de la vapeur d’eau,” Entropie, 110, pp. 42–53.
Diver,  R. B., Pederson,  S., Kappauf,  T., and Fletcher,  E. A., 1983, “Hydrogen and oxygen from water-VI. Quenching the effluent from a solar furnace,” Energy (Oxford), 8, pp. 947–955.
Villani, S., 1976, Isotope Separation, American Nuclear Society, Hinsdale, IL.
Fletcher,  E. A., and Yu,  R. C., 1979, “Considerations related to the effusional separation of equilibrium components of high-temperature water—The separation of helium-argon mixtures,” Energy (Oxford), 4, pp. 373–381.
Cales,  B., and Baumard,  J. F., 1984, “Mixed Conduction and Defect Structure of ZR02-CE02-Y203 Solid Solutions,” J. Electrochem. Soc., 131, No. 10, pp. 2407–2413.
Diver,  R. B., and Fletcher,  E. A., 1977, “Thoria effusion membranes,” Am. Ceram. Soc. Bull., 56, No. 11, pp. 1019–1020.
Levy, S. I., The Rare Earths, 2nd ed., Butler and Tanner, Ltd., London, p. 290.
Kogan,  A., 2000, “Direct solar thermal splitting of water and on-site separation of the products—IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor,” Int. J. Hydrogen Energy, 25, pp. 1043–1050.
Kogan,  A., Spiegler,  E., and Wolfshtein,  M., 2000, “Direct solar thermal splitting of water and on-site separation of the products—III. Improvement of reactor efficiency by steam entrainment,” Int. J. Hydrogen Energy, 25, pp. 739–745.
Diver,  R. B., and Fletcher,  E. A., 1979, “Hydrogen and oxygen from water. II. Some considerations in the reduction of the idea to practice,” Energy (Oxford), 4, pp. 1139–1150.
Diver,  R. B., and Fletcher,  E. A., 1980, “Hydrogen and oxygen from water. III. Evaluation of a hybrid process,” Energy (Oxford), 5, pp. 597–607.
Nakamura,  T., 1977, “Heat at High Temperatures,” Sol. Energy, 19, pp. 467–475.
Noring,  J. N., Diver,  R. B., and Fletcher,  E. A., 1981, “Hydrogen and oxygen from water—V. The Roc system,” Energy (Oxford), 6, pp. 109–121.
Scholl,  K. L., and Fletcher,  E. A., 1993, “Y2O3-doped ZrO2 membranes for solar electrothermal and solarthermal separation—II. Electron hole conductivity of yttria-stabilized zirconia,” Energy (Oxford), 18, pp. 69–74.
Fletcher,  E. A., 1996, “Solar Thermochemical and Electrochemical Research—How They Can Help Reduce the Carbon Dioxide Burden,” Energy (Oxford), 21, No. 7/8, pp. 739–745.
Lede,  J., 1999, “Solar thermochemical conversion of biomass,” Sol. Energy, 65, pp. 3–13.
Kugeler,  K., Kugeler,  M., Niessen,  H. F., and Hohn,  H., 1975, “Considerations on High Temperature Reactors for Process Heat Applications,” Nucl. Eng. Des., 34, pp. 15–32.
Harth,  R. E., and Boltendahl,  U., 1981, “The Chemical Heat Pipe,” Interdisciplinary. Sci. Rev., 6, pp. 221–228.
Carden,  P., 1977, “Energy coradiation using the reversible ammonia reaction,” Sol. Energy, 19, pp. 365–378.
Lovegrove,  K., 1993, “Thermodynamic limits on the performance of solar thermochemical energy storage system,” Int. J. Energy Res., 17, pp. 817–829.
Lovegrove,  K., and Luzzi,  A., 1996, “Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system,” Sol. Energy, 56, pp. 361–371.
Fraenkel,  D., Levitan,  R., and Levy,  M., 1986, “A solar thermochemical heat pipe based on the CO2-CH4 (1:1) system,” Int. J. Hydrogen Energy, 11, pp. 267–277.
Levy,  M., Levitan,  R., Rosin,  H., and Rubin,  R., 1993, “Solar energy storage via a closed-loop chemical heat pipe,” Sol. Energy, 50, pp. 179–189.
Levitan,  R., Levy,  M., Rosin,  H., and Rubin,  R., 1991, “Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace,” Sol. Energy Mater., 24, pp. 464–477.
Levy,  M., Rubin,  R., Rosin,  H., and Levitan,  R., 1992, “Methane reforming by direct solar irradiation of the catalyst,” Energy (Oxford), 17, pp. 749–756.
Diver,  R. B., Fish,  J. D., Levitan,  R., Levy,  M., Rosin,  H., and Richardson,  T. J., 1992, Sol. Energy, 48, p. 21.
Edwards,  J. H., Do,  K. T., Maitra,  A. M., Schuck,  S., Fok,  W., and Stein,  W., 1996, “The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat,” Energy Convers. Manage., 37, pp. 1339–1344.
Edwards,  J., 1995, “Potential sources of CO2 and the options for its large-scale utilization now and in the future,” Catal. Today, 3, pp. 59–66.
Anikeev,  V. I., Bobrin,  A. S., Ortner,  J., Schmidt,  S., Funken,  K. H., and Kuzin,  N. A., 1998, “Catalytic reactor/receiver for solar reforming of natural gas; design and performance,” Sol. Energy, 63, pp. 97–104.
Edwards,  J., and Maitra,  A., 1995, “The chemistry of methane reforming with carbon dioxide and its current and potential applications,” Fuel Process. Technol., 4, pp. 69–89.
Edwards,  J., 1995, “Potential sources of CO2 and the options for its large-scale utilization now and in the future,” Catal. Today, 43, pp. 59–66.
Worner,  A., and Tamme,  R., 1998, “CO2 reforming of methane in a solar driven volumetric receiver reactor,” Catal. Today, 46, pp. 165–175.
Murray,  J. P., and Fletcher,  E. A., 1994, “Reaction of steam with cellulose in a fluidized bed using concentrated sunlight,” Energy (Oxford), 19, pp. 1083–1098.
Boutin,  O., Ferrar,  M., and Lede,  J., 1998, “Radiant flash pylysis of cellulose: Evidence for the formation of short lifetime intermediate liquid species,” J. Anal. Appl. Pyrolysis, 47, pp. 13–31.
Aoki,  A., Ohtake,  H., Shimizu,  T., Kitayama,  Y., and Kodama,  T., 2000, “Reactive metal-oxide redox system for a two-step thermochemical conversion of coal and water to CO and H2,” Energy (Oxford), 25, pp. 201–218.
Steinfeld,  A., Larson,  C., Palumbo,  R., and Foley,  M., 1996, “Thermodynamic analysis of the coproduction of zinc and synthesis gas using solar process heat,” Energy (Oxford), 21, pp. 205–222.
Steinfeld,  A., Brack,  M., Meier,  A., Weidenkaff,  A., and Wuillemin,  D., 1998, “A solar chemical reactor for the co-production of zinc and synthesis gas,” Energy (Oxford), 10, pp. 803–814.
Matsunami,  J., Yoshida,  S., Yokota,  O., Nezuka,  M., Tsuji,  M., and Tamaura,  Y., 1999, “Gasification of waste tire and plastic (PET) by solar thermochemical process for solar energy utilization,” Sol. Energy, 65, pp. 21–23.
Matsunami,  J., Yoshida,  S., Yoshinori,  O., Yokota,  O., Tamaura,  Y., and Kitamura,  M., 2000, “Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization,” Sol. Energy, 68, pp. 257–261.
Lede,  J., Villermaux,  J., Royere,  C., Blouri,  B., and Flamant,  G., 1983, “Utilisation de L’energie solar concentree pour la Pyrolyse du bois et des huiles lourdes du petrole,” Entropie, 110, p. 57.
Dror,  Y., Marian,  S., and Levy,  M., 1985, “Pyrolysis of oil shales and coal,” Fuel, 64, pp. 406–410.
Berber,  R., and Fletcher,  E. A., 1988, “Extracting oil from shale using solar energy,” Energy (Oxford), 13, pp. 13–23.
Ingel,  G., Levy,  M., and Gordon,  J. M., 1991, “Gasification of oil shales by solar energy,” Sol. Energy Mater., 24, pp. 478–489.
Diver,  R. B., and Fletcher,  E. A., 1985, “Hydrogen and sulfur from H2S-III. The economics of a quench process,” Energy (Oxford), 10, pp. 831–842.
Anon, 1976, Manual on Disposal of Refinery Wastes, Chap. 8. Sulfur-Sulfur Compounds, Am. Pet. Inst., p. 931.
Noring,  J., and Fletcher,  E. A., 1982, “High temperature solar thermochemical processing—Hydrogen and sulfur from hydrogen sulfide,” Energy (Oxford), 7, pp. 651–666.
Kappauf,  T., Murray,  J. P., Palumbo,  R., Diver,  R. B., and Fletcher,  E. A., 1985, “Hydrogen and sulfur from H2S-IV. Quenching the effluent from a solar furnace,” Energy (Oxford), 10, pp. 1119–1137.
Davenport, R. E., and Kamatari, O., 1979, Chemical Economics Handbook, Stanford Res. Inst., Palo Alto, p. 780.001A.
Raymont,  M. E. D., 1975, “Make Hydrogen from Hydrogen-Sulfide,” Hydrocarbon Process., 54, No. 7, pp. 139–142.
Fukuda,  K., Dokiya,  M., Kameyama,  T., and Kotera,  Y., 1978, “Catalytic Decomposition of Hydrogen Sulfide,” Ind. Eng. Chem. Fundam., 17, No. 4, p. 243.
Dokiya,  M., Kameyama,  T., and Fukuda,  K., 1977, “Study of Thermochemical Hydrogen Preparation Application of Effusion on Thermochemically Limited Reaction,” Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 45, No. 11, p. 701.
Kameyama,  T., Dokiya,  M., Fujishigi,  M., Yokokawa,  H., and Fukuda,  K., 1983, “Production of Hydrogen from Hydrogen-Sulfide by Means of Selective Diffusion Membranes,” Int. J. Hydrogen Energy, 8, pp. 5–13.
Fletcher,  E. A., Noring,  J. E., and Murray,  J. P., 1984, “Hydrogen sulfide as a source of hydrogen,” Int. J. Hydrogen Energy, 9, pp. 587–593.
Kappauf,  K., and Fletcher,  E. A., 1985, “Hydrogen and sulfur from hydrogen sulfide—VI. Quenching the effluent from a solar furnace,” Energy (Oxford), 10, pp. 1119–1137.
Zaman,  J., and Chakma,  A., 1995, “Production of hydrogen and sulfur from hydrogen sulfide,” Fuel Process. Technol., 41, pp. 159–198.
Harvey,  W. S., Davidson,  J. S., and Fletcher,  E. A., 1998, “Thermolysis of hydrogen sulfide in the temperature range 1350–1600 K,” Ind. Eng. Chem. Res., 37, pp. 2323–2332.
Anon., 1983, Aluminum Industry: Energy Aspects of Structural Change, Organization for Economic Cooperation and Development, Paris (In the U.S.: OECD Publications and Information Center, Washington, D.C., pp. 40–44).
Steinfeld,  A., and Fletcher,  E. A., 1991, “Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy,” Energy (Oxford), 16, pp. 1011–1019.
1985, Encyclopedia of Chemical Technology, 3rd Ed., 24, Wiley, New York, pp. 807–854.
Robert Palumbo, private communication.
Salas-Morales,  J. C., and Evans,  J. W., 1994, “Further studies of a zinc-air cell employing a packed bed anode. Part III: Improvements in cell design,” J. Appl. Electrochem., 24, pp. 858–862.
Steinfeld,  A., Kuhn,  P., Reller,  A., Palumbo,  R, Murray,  J., and Tamaura,  Y., 1998, “Solar processed metals as clean energy carriers and water splitters,” Int. J. Hydrogen Energy, 23, pp. 767–774.
Berman,  A., and Epstein,  M., 2000, “The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor,” Int. J. Hydrogen Energy, 25, pp. 957–967.
Fletcher,  E. A., MacDonald,  F. J., and Kunnerth,  D., 1985, “High temperature solar electrothermal processing—II. Zinc from zinc oxide,” Energy (Oxford), 10, pp. 1255–1272.
Steinfeld,  A., Frei,  A., Kuhn,  P., and Wuillemin,  D., 1995, “Solarthermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes,” Int. J. Hydrogen Energy, 20, pp. 793–804.
Steinfeld,  A., Larson,  C., Palumbo,  R., and Foley,  M., 1996, “Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat,” Energy (Oxford), 21, pp. 205–222.
Haueter,  P., Moeller,  S., Palumbo,  R., and Steinfeld,  A., 1999, “The production of zinc by thermal dissociation of zinc oxide—solar chemical reactor design,” Sol. Energy, 67, pp. 161–167.
Weidenkaff,  A., Reller,  A., Sibieude,  F., Wokoun,  A., and Steinfeld,  A., 2000, “Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace,” Chem. Mater., 12, pp. 2175–2181.
Fletcher,  E. A., and Noring,  J. E., 1983, “High temperature solar electrothermal processing—Zinc from zinc oxide,” Energy (Oxford), 8, pp. 247–254.
Palumbo,  R. D., and Fletcher,  E. A., 1988, “High temperature solar electrothermal processing—III. Zinc from zinc oxide at 1200–1600 K using a non-consumable anode,” Energy (Oxford), 13, pp. 319–332.
Fletcher,  E. A., 1999, “Solarthermal and solar quasi-electrolytic processing and separations: Zinc from zinc oxide as an example,” Ind. Eng. Chem. Res., 38, pp. 2275–2282.
Parks,  D. J., Scholl,  K. L., and Fletcher,  E. A., 1988, “A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solarthermal separations,” Energy (Oxford), 13, pp. 121–136.
Anthrop,  D. F., and Searcy,  A. W., 1964, “Sublimation and thermodynamic properties of zinc oxide,” J. Phys. Chem., 68, pp. 2335–2342.
Watson,  L. R., Dressler,  T. L., Salter,  R. H., and Murad,  E., 1993, “High temperature mass spectrometric studies of the bond energies of gas phase ZnO, NiO, and CuO,” J. Phys. Chem., 97, pp. 5577–5580.
Bilgen,  E., Ducarroir,  M., Foex,  M., Sibieude,  F., and Trombe,  F., 1977, “Use of solar energy for direct and two-step water decomposition cycles,” Int. J. Hydrogen Energy, 2, pp. 251–257.
Palumbo,  R., Lede,  J., Boutin,  O., Ricart,  E. E., Steinfeld,  A., Moller,  S., Weidenkaff,  A., Fletcher,  E. A., and Beilicke,  J., 1998, “The production of Zn from ZnO in a high-temperature solar decomposition quench process—I. The scientific framework for the process,” Chem. Eng. Sci., 53, pp. 2503–2517.
Weidenkaff,  A., Steinfeld,  A., Wokaun,  A., Eicher,  B., and Reller,  A., 1999, “The direct solar thermal dissociation of ZnO: Condensation and crystallization of zinc in the presence of oxygen,” Sol. Energy, 65, pp. 59–69.
Bessieres,  J., Bessieres,  A., and Heizmann,  J. J., 1980, “Iron oxide reduction kinetics by hdyrogen,” Int. J. Hydrogen Energy, 5, pp. 585–598.
Steinfeld,  A., Kuhn,  P., and Karni,  J., 1993, “High temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4 reduction with ethane,” Energy (Oxford), 18, pp. 239–249.
Steinfeld,  A., Frei,  A., and Kuhn,  P., 1995, “Thermoanalysis of the combined Fe3O4 and CH4 reforming processes,” Mater. Trans., JIM, 26B, pp. 509–515.
Tamaura,  Y., Wada,  Y., Yoshida,  T., Ehrensberger,  K., and Steinfeld,  A., 1997, “The coal/Fe3O4 system for mixing of solar and fossil energies,” Energy (Oxford), 22, pp. 338–342.
Sibieude,  F., Ducarroir,  M., Tofighi,  A., and Ambriz,  J., 1982, “High temperature experiments with a solar furnace: the decomposition of Fe34,Mn3O4, CdO,” Int. J. Hydrogen Energy, 7, pp. 79–88.
Tofighi,  A., and Sibieude,  F., 1984, “Dissociation of magnerite in a solar furnace for hydrogen production. Tentative production evaluation of a 1000 kW concentrator from small scale (2 kW) experimental results,” Int. J. Hydrogen Energy, 9, pp. 293–296.
Steinfeld,  A., Sanders,  S., and Palumbo,  R., 1998, “Design aspects of solar thermochemical engineering—A case study; two step water splitting cycle using the Fe3O4 redox system,” Sol. Energy, 65, pp. 43–53.
Murray,  J. P., Steinfeld,  A., and Fletcher,  E. A., 1995, “Metals, Nitrides, and Carbides Via Solar Carbothermal Reduction of Metal Oxides,” Energy (Oxford), 20, pp. 695–704.
Palumbo,  R., Campbell,  M. B., and Grafe,  T. H., 1992, “High temperature solarthermal processing ZnS(s) and CO from ZnO(s) and C(gr) using Ti2O3(s) and TiO2(s),” Energy (Oxford), 17, pp. 179–190.
Millar,  J., Palumbo,  R., Rouanet,  A., and Pichelin,  G., 1997, “The production of Zn from ZnO in a two-step solar process utilizing FeO and Fe3O4,” Energy (Oxford), 22, pp. 301–309.
Yakimow,  S. E., Krause,  P. E., Hahn,  G. W., and Palumbo,  R., 1994, “Initial kinetic study with a chemical equilibrium analysis of the ZnO(s)+Ti2O3(s) reaction,” I&EC Res., 33, pp. 436–439.
Palumbo,  R. D., and Larson,  C. L., 1990, “Production of C from CO2 in a two-step solar process utilizing FeO and Fe3O4,” Energy (Oxford), 15, pp. 479–487.
Armas,  B., and Trombe,  F., 1973, “Chemical vapor deposition of molybdenum and tungsten borides by thermal decomposition of gaseous mixtures of halides on a solar ‘front chaud,’” Sol. Energy, 15, pp. 67–73.
Cruz Fernandes,  J., Guerra Rosa,  L., Martinez,  D., Rodriguez,  J., and Shohoji,  N., 1998, “Influence of gas environment on synthesis of silicon carbide through reaction between silicon and amorphous carbon in a solar furnace at Platforma solar de Almeria,” J. Ceram. Soc. Jpn., 106, pp. 839–841.
Shohoji,  N., Guerra Rosa,  L., Cruz Fernandes,  J., Martinez,  D., and Rodriguez,  J., 1999, “Catalytic acceleration of graphitization of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace,” Mater. Chem. Phys., 58, pp. 172–176.
Guerra Rosa,  L., Cruz Fernandes,  J., Amaral,  P. M., Martinez,  D., and Shohoji,  N., 1999, “Photochemically promoted formation of higher carbide of molybdenum through reaction between metallic molybdenum powders and graphite powders in a solar furnace,” Int. J. Refract. Met. Hard Mater., 17, pp. 351–356.
Shohoji,  N., Amaral,  P. M., Cruz Fernandes,  J., Guerra Rosa,  L., Martinez,  D., and Rodriguez  J., 2000, “Catalytic graphitization of amorphous carbon during solar carbide synthesis of Via group metals (Cr, Mo, and W),” Mater. Trans., JIM, 41, pp. 246–249.
Cruz Fernandes,  J., Amaral,  P. M., Guerra Rosa,  L., Martinez,  D., Rodriguez,  J., and Shohoji,  N., 2000, “X-ray diffraction characterization of carbide and carbonitride if Ti and Zr prepared through reaction between metal powders and carbon powders in a solar furnace,” Int. J. Refract. Met. Hard Mater., 17, pp. 437–443.
Pohlmann,  B., Funken,  K. H., and Dominik,  R., 1999, “A solar heated rotary kiln for detoxification of hazardous wastes,” J. Phys. IV, 9, pp. 307–312.
Funken,  K. H., Pohlmann,  B., Eckhard,  L., and Dominik,  R., 1999, “Application of concentrated solar radiation to high temperature detoxification and recycling process of hazardous wastes,” Sol. Energy, 65, pp. 25–31.
Schaffner,  B., Hoffelner,  W., and Steinfeld,  A., 2000, “Recycling of hazardous solid waste material using high temperature solar process heat—I, Thermodynamic analysis,” Environ. Sci. Technol., 34, pp. 4177–4184.
Malato,  S., Gimenez,  J., Richter,  C., Curco,  D., and Blanco,  J., 1997, “Low concentrating CPC collectors for photocatalytic water detoxification. Comparison with a medium concentrating solar collector,” Wat. Sci. Techn., 35, pp. 157–164.
Minero,  C., Pelizzetti,  E., Malato,  S., and Blanco,  J., 1993, “Large solar plant photocatalytic water decontamination: Degradation of pentachloropenol,” Chemosphere, 26, pp. 2103–2119.
Minero,  C., Pelizzetti,  E., Malato,  S., and Blanco,  J., 1996, “Large solar plant photocatalytic water decontamination: Effect of operational parameters,” Sol. Energy, 56, pp. 421–428.
Dillert,  R., Cassano,  A. E., Goslich,  R., and Bahnemann,  D., 1999, “Large scale studies in solar catalytic wastewater treatment,” Catal. Today, 54, pp. 267–282.
Giménez,  J., Curcó,  D., and Queral,  M. A., 1999, “Photocatalytic treatment of phenol and 2,4-dichlorophenol in a solar plant in the way to scaling-up,” Catal. Today, 54, pp. 229–244.
Malato,  S., Blanco,  J., Richter,  C., Braun,  B., and Maldonado,  M. I., 1998, “Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic species,” Appl. Catal., B, 17, pp. 347–356.
Herrmann,  J. M., Matos,  J., Disdier,  J., Guillard,  C., Laine,  J., Malato,  S., and Blanco,  J., 1999, “Photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension,” Catal. Today, 54, No. 2–3, pp. 217–228.
Chibante,  L. P. F., Thess,  A., Alford,  J. M., Diener,  M. D., and Smalley,  R. E., 1993, “Solar Generation of the Fullerenes,” J. Phys. Chem., 97, pp. 8696–8700.
Fields,  C. L., Pitts,  J. R., Hale,  M. J., Bingham,  C., Lewandowski,  A., and King,  D. E., 1993, “Formation of Fullerenes in Highly Concentrated Solar Flux,” J. Phys. Chem., 97, pp. 8701–8702.
Laplaze,  D., Bernier,  P., Barbenette,  L., Lambert,  J. M., Flamant,  G., Lebrun,  M., Brunelle,  A., and Della-Negra,  S., 1994, “Production of Fullerenes from Solar Energy—The Odeillo Experiment,” C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 318II , pp. 733–738.
Laplaze,  D., Bernier,  P., Flamant,  G., Lebrun,  M., Brunelle,  A., and Della-Negra,  S., 1996, “Solar Energy—Application of the Production of Fullerenes,” J. Phys. B, 29, pp. 4943–4954.
Steinfeld,  A., Kirillov,  V., Kuvshinov,  G., Mogilnykh,  Y., and Reller,  A., 1997, “Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane,” Chem. Eng. Sci., 52, pp. 3599–3603.
Meier,  A., Kirillov,  V., Kuvshinov,  G., Mogilnykh,  Y., Weidenkaff,  A., and Steinfeld,  A., 1999, “Production of filamentous carbon by solarthermal decomposition of hydrocarbons,” J. Phys. IV, 9, pp. 393–398.

Figures

Grahic Jump Location
The reactor (black box) receives ambient temperature and pressure liquid water and can exchange heat with the hot and cold reservoirs. It produces separated ambient temperature and pressure hydrogen and oxygen. The ideal fuel cell is an intellectual construct. Its work output measures the amount of product made by the reactor. When its product water is returned to the reactor, the system is closed. If the combined system is enclosed by the gray box, the gray enclosure becomes a heat engine, viz. It exchanges heat with hot and cold reservoirs and does electrical work. Its maximum efficiency is the Carnot efficiency.
Grahic Jump Location
Variation of the energy collection (absorption) efficiency of a black body cavity with its temperature at various solar concentration ratios
Grahic Jump Location
Variation of the Carnot and absorption efficiencies with cavity temperatures and solar concentration ratios
Grahic Jump Location
Variation of the ideal system efficiency with cavity temperature at various solar concentrations
Grahic Jump Location
Net mole fractions of the equilibrium components of water at 1.033 bar after molecular water has been subtracted
Grahic Jump Location
Net mole fractions of the equilibrium components of water at 0.0207 bar after molecular water has been subtracted
Grahic Jump Location
Isobaric phase diagram of the three component system carbon-hydrogen-oxygen at a pressure in the region of our greatest interest

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In