0
TECHNICAL PAPERS

Solar Selective Properties of Electrolytically Formed Thin Layers on Aluminum

[+] Author and Article Information
T. Möller, Th. Schwarz, D. Hönicke

Technische Universität Chemnitz, Lehrstuhl für Technische Chemie, 09107 Chemnitz/Germany

J. Sol. Energy Eng 122(2), 101-105 (May 01, 2000) (5 pages) doi:10.1115/1.1287500 History: Received May 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Parkhulik,  V. P., and Shershulsy,  V. I., 1992, “Theoretical modelling of porous oxide growth on aluminum,” J. Phys. D: Appl. Phys., 25, pp. 1258–1263.
Thompson, G. E., and Wood, G. C., 1983, “Anodic Films on Aluminum” in Treatise on Material Science and Technology, Scully, J. C., ed., Academic, New York, London.
Thompson,  G. E., 1997, “Porous anodic alumina: fabrication, characterization and application,” Thin Solid Films, 297, pp. 192–201.
Blain,  J., LeBel,  C., Saint-Jacques,  R. G., and Rheault,  F., 1985, “Spectrally selective surfaces of Co-pigmented anodic Al2O3,” J. Appl. Phys., 58, pp. 490–494.
Anderson,  Å., Hunderi,  O., and Granqvist,  C. G., 1980, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys., 51, pp. 754–764.
Roos,  A., Georgson,  M., and Wäckelgard,  E., 1991, “Thin-oxide-coated anodized aluminum selective absorber surfaces,” Sol. Energy Mater., 22, pp. 15–28.
Möller,  T., and Hönicke,  D., 1998, “Solar selective properties of electrodeposited thin layers on aluminum,” Sol. Energy Mater. Sol. Cells, 54, pp. 397–403.
Brinker, C. J., and Scherer, G. W., 1990, SOL-GEL-Science The Physics and Chemistry of Sol-Gel-Processing, Academic, San Diego, London.
ASTM E 891, “Standard tables for terrestrial direct normal solar spectral irradiance for air mass 1.5” (ASTM=American Society for Testing & Materials).
DIN 50017, “Climates and their technical applications; Condensated water containing” (DIN=German Industrial Standard).

Figures

Grahic Jump Location
Voltage-time-regime of the ISOC-process 7
Grahic Jump Location
Experimental setup for small ISOC-samples. a) Thermostate, b) oscilloscope, c) data acquisition module, d) power amplifier, e) electronic signal control unit, f ) computer, g) thermoelement, h) thermometer, i) electrodes (aluminum and graphite-counter-electrode), j) magnetic mixer, k) electrolyte, l) cooling fluid, m) electrolytic bath.
Grahic Jump Location
Hemispherical reflectance spectra of aluminum and alumina surfaces after different steps of the ISOC-process; a) untreated aluminum surface, b) formation layer (anodized surface using electrolyte G, tF=120 s,UFE=20 V), c) aluminia layer with deposited Cu and Ni but without formation layer (tB=150 s,UA=10 V,UK=−10 V,tA=tK=1 ms), d) complete ISOC-layer (during time span tF+tB=270 s)
Grahic Jump Location
Influence of selected electrical parameters on the emittance and absorptance of ISOC-layers; a) emittance and b) absorptance vs. formation voltage UFE with pulse times tK=tA=1 ms (▪), 2 ms (▴) at UA=10 V,UK=−10 V,tF=120 s and tB=150 s;c) absorptance (♦) and emittance (▾) vs. total pulsing time tB at UFE=20 V,UA=10 V,UK=−10 V,tF=120 s and tA=tK=1 ms
Grahic Jump Location
Spectra of a) emittance and b) absorptance vs. metal ion concentration either as Ni2+ (▪) or Cu2+ (▴) and c) emittance and d) absorptance vs. Cu2+ ion concentration in the presence of both Cu2+ and Ni2+ ions. Used electrolytes: a) and b): A,B,C,D,E,F; c) and d): G,H,I.
Grahic Jump Location
SEM-micrograph of the ISOC-layer (top view) formed in the electrolyte H (Table 2); magnification: 8000
Grahic Jump Location
SEM-micrograph of the ISOC-layer (top view and cross section at the bottom) prepared in the electrolyte G (Table 2); magnification: 20000
Grahic Jump Location
Hemispherical reflectance spectra of an ISOC-layer (formed in electrolyte G with the electrical parameters tF=120 s,UFE=20 V,UA=10 V,UK=−10 V,tA=tK=1 ms,tB=150 s) a) without and b) with posttreatment by a sol-gel-process
Grahic Jump Location
Hemispherical reflectance spectra of ISOC-layers (formed in electrolyte G with the electrical parameters tF=120 s,UFE=20 V,UA=10 V,UK=−10 V,tA=tK=1 ms,tB=150 s) without posttreatment a) before, b) after a climate test of 70 h; reflectance spectra of ISOC-layers with posttreatment c) before, d) after a 168 h lasting climate test
Grahic Jump Location
Hemispherical reflectance spectra of ISOC-layers (formed in electrolyte G with the electrical parameters tF=120 s,UFE=20 V,UA=10 V,UK=−10 V,tA=tK=1 ms,tB=150 s) in the VIS-wavelength-range; posttreated ISOC-layers a) without and b) with a Ag2+ ions (0.01 mol/l) in the sol-gel-solution

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In