0
RESEARCH PAPERS

Dynamic Stall and Aerodynamic Damping

[+] Author and Article Information
F. Rasmussen, J. T. Petersen, H. A. Madsen

Riso̸ National Laboratory, Department of Wind Energy and Atmospheric Physics, Aeroelastic Design, 4000 Roskilde, Denmark

J. Sol. Energy Eng 121(3), 150-155 (Aug 01, 1999) (6 pages) doi:10.1115/1.2888426 History: Received December 01, 1997; Revised June 01, 1999; Online February 14, 2008

Abstract

Riso̸ has developed a dynamic stall model that is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In