Numerical Simulation of Dynamic Stall Around an Airfoil in Darrieus Motion

[+] Author and Article Information
A. Allet, S. Hallé, I. Paraschivoiu

J.-A. Bombardier Aeronautical Chair, Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Québec Canada

J. Sol. Energy Eng 121(1), 69-76 (Feb 01, 1999) (8 pages) doi:10.1115/1.2888145 History: Received December 01, 1997; Revised November 01, 1998; Online February 14, 2008


The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. Our investigation centers on an evaluation of the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first we present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under dynamic stall conditions are presented.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In