Solar-Powered Photocatalytic Fiber-Optic Cable Reactor for Waste Stream Remediation

[+] Author and Article Information
N. J. Peill, M. R. Hoffmann

Environmental Engineering Science, W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125

J. Sol. Energy Eng 119(3), 229-236 (Aug 01, 1997) (8 pages) doi:10.1115/1.2888024 History: Received October 01, 1996; Revised January 01, 1997; Online February 14, 2008


The design and testing of a solar-powered fiber-optic cable reactor prototype for the photocatalytic destruction of organic pollutants is presented. A concentrating collector directs sunlight into a fiber-optic cable which transmits light to a TiO2 photocatalyst immobilized on the fibers and immersed in a reaction solution. The performance of the reactor using solar and artificial UV radiation are compared. The system is also compared to another fiber-optic cable reactor having a 50 percent higher photocatalytic surface area-to-reactor volume ratio to investigate mass transport limitations. Reaction rates for the oxidation of 4-chlorophenol of 25 and 12 μMmin−1 were measured for solar and artificial UV sources, respectively. The faster reaction rate using solar radiation is due to a higher UV light flux compared to the artificial source. Both fiber-optic reactor systems were determined not to be mass transport limited. Relative quantum efficiencies of φ = 0.014 and φ = 0.020 were determined for the solar and artificial irradiations, respectively. In agreement with previous findings, enhanced quantum efficiencies are attributed to a lower absorbed light intensity-to-photocatalytic surface area ratio. The solar reactor prototype was found to degrade effectively 4-chlorophenol and may prove useful for the in situ passive decontamination of subsurface and other remote environments.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In