0
RESEARCH PAPERS

A Direct-Heating Energy-Storage Receiver for Dish-Stirling Solar Energy Systems

[+] Author and Article Information
K. O. Lund

Center for Energy and Combustion Research, 0411 Department of AMES, University of California, La Jolla, CA 92093-0411

J. Sol. Energy Eng 118(1), 15-19 (Feb 01, 1996) (5 pages) doi:10.1115/1.2847900 History: Received June 01, 1994; Revised September 01, 1995; Online February 14, 2008

Abstract

Dish-Stirling solar receiver designs are investigated and evaluated for possible use with sensible energy storage in single-phase materials. The designs differ from previous receivers in utilizing axial conduction in the storage material for attenuation of the solar flux transients due to intermittent cloud cover, and in having convective heat removal at the base of the receiver. One-dimensional, time-dependent heat transfer equations are formulated for the storage material temperature field, including losses to the environment, and a general heat exchange effectiveness boundary condition at the base. The solar source flux is represented as the sum of steady and periodic cloud-transient components, with the steady component solved subject to specified receiver thermal efficiency. For the transient cloud-cover component the Fast Fourier Transform algorithm (FFT) is applied, and the complex transfer function of the receiver is obtained as a filter for the input flux spectrum. Inverse transformation results in the amplitudes and mode shapes of the transient temperature component. By adjustment of design parameters, the cloud-cover amplitude variations of the outlet gas temperature can be limited to acceptable magnitudes, thus simplifying control systems.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In