0
RESEARCH PAPERS

On the Analysis of Surface Error Distributions on Concentrated Solar Collectors

[+] Author and Article Information
G. Johnston

Energy Research Centre/Department of Engineering, Australian National University, Canberra, ACT, Australia 0200

J. Sol. Energy Eng 117(4), 294-296 (Nov 01, 1995) (3 pages) doi:10.1115/1.2847843 History: Received February 01, 1995; Revised August 01, 1995; Online February 14, 2008

Abstract

The distribution of surface normal deviations from an ideal shape on concentrating solar surfaces is used to define the optical quality of a reflector. These distributions can be modeled by considering them to ideally follow a two-dimensional, circular Gaussian distribution. However, the measurement of these deviations in experimental systems usually defines only that component of the surface normal that deviates from the ideal surface normal direction, and ignores the rotational component of the normal vector in the plane perpendicular to the ideal direction. To compare the measured one-dimensional radial distribution with the expected two-dimensional model, we must transform the two-dimensional model into the appropriate radial distribution. The following analysis describes this transformation, and presents results gained from an application of the analysis to measured surface normal data from a mirror panel used in the reflecting surface of the 400 m2 paraboloidal (“Big Dish”) concentrator constructed at the ANU .

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In