0
RESEARCH PAPERS

Fabric Stratification Manifolds for Solar Water Heating

[+] Author and Article Information
J. H. Davidson

Mechanical Engineering Department, University of Minnesota, Minneapolis, MN 55455

D. A. Adams

Solar Energy Applications Laboratory, Colorado State University, Fort Collins, CO 80523

J. Sol. Energy Eng 116(3), 130-136 (Aug 01, 1994) (7 pages) doi:10.1115/1.2930071 History: Received May 01, 1993; Revised January 01, 1994; Online June 06, 2008

Abstract

The level of thermal stratification that can be maintained in forced-flow, direct solar water-heating systems using a fabric manifold is studied in a 372-liter tank with an inlet flow rate of 0.07 1/s. A rib-knit, lightweight, spun-orlon acrylic is the most effective manifold material in a comparative study of 13 synthetic and natural fabrics. Thermal stratification (or more appropriately mixing) in the tank equipped with this acrylic manifold is compared to the level of stratification achieved using a rigid, porous manifold and a conventional drop-tube inlet. Initial tank temperature profile, temperature of the water entering the tank, and test duration are varied in three testing schemes. Comparison of vertical temperature profiles and height-weighted energy stored in the tank indicate that under realistic operating conditions, the fabric manifold is 4 percent more effective than the rigid manifold, and 48 percent more effective than the conventional drop-tube inlet.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In