Investigation of a Direct Catalytic Absorption Reactor for Hazardous Waste Destruction

[+] Author and Article Information
R. D. Skocypec, R. E. Hogan

Thermal and Fluid Engineering Department, Sandia National Laboratories, Albuquerque, NM 87185

J. Sol. Energy Eng 116(1), 14-18 (Feb 01, 1994) (5 pages) doi:10.1115/1.2930058 History: Received May 05, 1991; Revised August 12, 1993; Online June 06, 2008


Direct Catalytic Absorption Reactors (DCARs) use a porous solid matrix to volumetrically absorb solar energy. This energy is used to promote heterogeneous chemistry on the catalytic surface of the absorber with fluid-phase reactant species. Experimental efforts at Sandia National Laboratories (SNL) are using a DCAR to destroy hazardous chemical waste. A numerical model, previously developed to analyze solar volumetric air-heating receivers and methane-reforming reactors, is extended in this work to include the destruction of a chlorinated hydrocarbon chemical waste, 1,1,1-trichloroethane (TCA). The model includes solar and infrared radiation, heterogeneous chemistry, conduction in the solid absorber, and convection between the fluid and solid absorber. The predicted thermal and chemical conditions for typical operating conditions at the SNL solar furnace suggest that TCA can be destroyed in a DCAR. The temperature predictions agree well with currently available thermocouple data for heating carbon dioxide gas in the DCAR. Feasibility and scoping calculations show trichloroethane destruction efficiencies up to 99.9997 percent at a trichloroethane flow rate of 1.7 kg/hr may be obtainable with typical SNL solar furnace fluxes. Greater destruction efficiencies and greater destruction rates should be possible with higher solar fluxes. Improvements in reactor performance can be achieved by tailoring the absorber to alter the radial mass flux distribution in the absorber with the radial solar flux distribution.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In