A Change-Point Principal Component Analysis (CP/PCA) Method for Predicting Energy Usage in Commercial Buildings: The PCA Model

[+] Author and Article Information
D. Ruch, Lu Chen, J. S. Haberl, D. E. Claridge

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Sol. Energy Eng 115(2), 77-84 (May 01, 1993) (8 pages) doi:10.1115/1.2930035 History: Received January 01, 1991; Revised June 01, 1991; Online June 06, 2008


A new method for predicting daily whole-building electricity usage in a commercial building has been developed. This method utilizes a Principal Component Analysis (PCA) of intercorrelated influencing parameters (e.g., dry-bulb temperature, solar radiation and humidity) to predict electricity consumption in conjunction with a change-point model. This paper describes the PCA procedure and presents the results of its application in conjunction with a change-point regression, to predict whole-building electricity consumption for a commercial grocery store. Comparison of the results with a traditional Multiple Linear Regression (MLR) analysis indicates that a change-point, Principal Component Analysis (CP/PCA) appears to produce a more reliable and physically plausible model than an MLR analysis and offers more insight into the environmental and operational driving forces that influence energy consumption in a commercial building. It is thought that the method will be useful for determining conservation retrofit savings from pre-retrofit and post-retrofit consumption data for commercial buildings. A companion paper presents the development of the four-parameter change-point model and a comparison to the Princeton Scorekeeping Method (PRISM) (Ruch and Claridge, 1991).

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In