Impact of Component Selection and Operation on Thermal Ratings of Drain-Back Solar Water Heaters

[+] Author and Article Information
J. H. Davidson, W. T. Carlson, W. S. Duff

Solar Energy Applications Laboratory, Colorado State University, Fort Collins, CO 80523

J. Sol. Energy Eng 114(4), 219-226 (Nov 01, 1992) (8 pages) doi:10.1115/1.2930009 History: Received November 01, 1991; Revised May 01, 1992; Online June 06, 2008


A half-factorial, two-level experimental design is used to determine the effects of changes in collector area, storage tank volume, collector flow rate, recirculation flow rate, and storage tank design on thermal rating of a solar drain-back water heating system. Experimental ratings are determined in accordance with the Solar Rating and Certification Corporation guidelines. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards. Statistical analyses indicate that a change in collector area accounts for nearly 90 percent of the variation in heat output. Doubling collector area from 2.78 m2 to 5.56 m2 increases delivered solar energy by 31 percent. Use of a stratification manifold increases the delivery of solar energy by six percent. Doubling collector flow rate from 0.057 to 0.114 1/s increases solar output by approximately three percent; however, the increase in pumping energy outweighs the benefits of increasing collector flow rate. The effects of recirculation flow rate and tank volume are obscured by experimental error.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In