Transient Dehumidification Characteristics of a Heat Pump in Cooling Mode

[+] Author and Article Information
Srinivas Katipamula, Dennis L. O’Neal

Energy Systems Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77841

J. Sol. Energy Eng 113(4), 264-271 (Nov 01, 1991) (8 pages) doi:10.1115/1.2929972 History: Received May 05, 1991; Revised July 22, 1991; Online June 06, 2008


Much of the seasonal cooling operation of the heat pump occurs at part-load conditions when the unit cycles on and off to meet the cooling load. The seasonal efficiency under part-load conditions of the heat pump is typically estimated from a laboratory measurement of the degradation coefficient (CD ) . Manufacturers are only required to estimate CD at a single test condition where the indoor coil performs sensible cooling only. The effects of transient dehumidification losses are not accounted in estimating the seasonal efficiency. In hot and humid climates, dehumidification performance of a heat pump is as important as the sensible cooling performance. Therefore, a series of tests were designed to quantify the part-load dehumidification characteristics of a three ton residential air-to-air heat pump. The tests include: cycling rates from 0.8 to 10 cycles per hour (cph), percent on-times of 20, 50, and 80 percent, indoor dry-bulb temperature between 22.2°C and 26.7°C, and indoor relative humidity between 20 to 67 percent. The outdoor conditions and the indoor air flow rate were constant for all test runs. All experiments were performed in psychometric chambers under controlled conditions. The dehumidification process started between 60 to 150 seconds after start-up depending on the test conditions. During start-up, the losses in the latent capacity were greater than the losses in the sensible capacity. The dehumidification response increased with indoor dry-bulb temperature at constant relative humidity and decreased with indoor temperature at constant dew-point temperature.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In