Exergy Control for a Flat-Plate Collector/Rankine Cycle Solar Power System

[+] Author and Article Information
Giampaolo Manfrida

Istituto di Energetica, Universita degli Studi di Perugia, Perugia, Italy

Shukuru J. M. Kawambwa

Institute of Production Innovation, University of Dar es Salaam, Tanzania

J. Sol. Energy Eng 113(2), 89-93 (May 01, 1991) (5 pages) doi:10.1115/1.2929963 History: Received March 07, 1990; Revised February 01, 1991; Online June 06, 2008


A performance study is presented of a Rankine organic cycle powered by a low temperature solar collector. In this work a two-phase collector is considered where the heat transfer fluid is vaporized and its saturated vapor expands in a turbine according to a Rankine cycle. The collector system is divided into a boiling and a nonboiling (subcooled) part: The limit between the two depends upon the value of flow rate and radiation. A modified form of the Bliss equation is used to model the thermal performance of the collector in terms of thermal efficiency versus DTI [DTI= (Absorber average temperature-Ambient temperature)/ Solar Radiation]. The system is analyzed by second-law analysis, and it includes several exergy losses of different types (heat transfer, heat loss, etc.) which determine the overall exergy balance. Different working fluids are considered, and optimization to a certain extent is demonstrated from this point of view. In order to minimize irreversibilities and guarantee the most efficient conversion processes, the most important point is the right selection of the collector operating pressure level, which depends on the instantaneous value of radiation and ambient temperature (as well as on the collector thermal performance). The choice of the optimal pressure level is done by means of second-law arguments; the flow rates across the collector, the turbine, and the condenser are consequently determined. A simulation over a typical sunny day in Florence, Italy allows the calculation of the expected daily performance.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In