0
RESEARCH PAPERS

Heat Transfer of Buried Pipe for Heat Pump Application

[+] Author and Article Information
Viung C. Mei

Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6070

J. Sol. Energy Eng 113(1), 51-55 (Feb 01, 1991) (5 pages) doi:10.1115/1.2929951 History: Received February 27, 1990; Revised September 15, 1990; Online June 06, 2008

Abstract

It is generally felt that the application of line source theory for ground coil design usually resulted in excessive overdesign. It was anticipated that in order for the ground coil heat pump systems to be economically competitive with other residential heating and cooling systems, ground coil overdesign had to be kept to a minimum. A new ground coil model was derived, which based on energy balance rather than the traditional line source theory. It was aimed to more accurately predict the operation of ground coils. It is the intention of this study to compare this ground coil model with models based on line source theory, a simple line source model and a modified line source model, by using them to simulate the same field test data for both summer and winter ground coil operations. The results indicated that for winter coil operation, the new model predicted the coil liquid exit temperature less than 2°C maximum deviation from the measured values, with an average deviation less than 1°C. The modified line source model had an average deviation of more than 1.5°C. For summer operation, all models underpredicted the measured soil temperatures because the effect of thermal backfill material was not included in the models. The new model still predicted the test results better than the other two models. However, when the effect of sand thermal backfill was included in the new model, which was not easy for the other two models, the calculated soil temperatures were almost identical to the test results.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In