0
RESEARCH PAPERS

Energy and Availability Transport Losses in a Point-Focus Solar Concentrator Field

[+] Author and Article Information
W. B. Stine

Mechanical Engineering Department, California State Polytechnic University, Pomona, CA 91768

A. A. Heckes

Sandia National Laboratories, Albuquerque, NM 87185

J. Sol. Energy Eng 109(3), 205-209 (Aug 01, 1987) (5 pages) doi:10.1115/1.3268207 History: Received October 01, 1986; Online November 11, 2009

Abstract

This paper presents the results of an experimental study of the losses in transporting thermal energy from a field of 114 point-focus solar collectors to a central thermal energy conversion system at the Solar Total Energy Project (STEP), Shenandoah, Georgia. Conduction and convection heat losses from the collector field piping and solar collector receivers and radiant energy losses from the solar collector receivers were measured. At normal operating conditions the steady state heat losses per unit of collector aperture area are 130 W/m2 (41 Btu/hr-ft2 ). The thermal mass of the collector field was found to be 3.92 kWh/°C (7,440 Btu/°F), which implies that 17 percent of the energy collected on a typical day is used to warm the field piping to its operating temperature. The loss of availability from the collectors and the field piping shows that only 21 percent of the available solar energy falling on the collector field is delivered to the power cycle for conversion into electricity.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In