0
RESEARCH PAPERS

Rapid Heating of Gas/Small Particle Mixture

[+] Author and Article Information
K. Y. Wang

Solar Energy Research Institute, Golden, CO 80401

W. W. Yuen

Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106

J. Sol. Energy Eng 109(2), 143-149 (May 01, 1987) (7 pages) doi:10.1115/1.3268191 History: Received December 01, 1985; Online November 11, 2009

Abstract

The concept of using a mixture of particles and air as a medium to absorb radiative energy has been proposed for various applications. In this paper, carbon particles mixed with gas form a medium that absorbs radiation from sources such as concentrated solar energy. A single-particle, two-temperature model is used to study the transient temperature of the particle/gas mixture as it undergoes a constant pressure expansion process. The results indicate that for particles smaller than 1 μm in diameter, the surrounding air can be heated as quickly as the particles, while for particles larger than 1 mm in diameter, the air temperature stays relatively unchanged and the particles are heated to a very high temperature. The scattering albedos from the particles are also calculated, revealing that their contribution from scattering to the heating process is insignificant for particles with diameter less than 1 μm.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In