Wind-Related Heat Transfer Coefficient for Flat-Plate Solar Collectors

[+] Author and Article Information
S. Shakerin

Mechanical Engineering Department, University of the Pacific, Stockton, CA 95211

J. Sol. Energy Eng 109(2), 108-110 (May 01, 1987) (3 pages) doi:10.1115/1.3268186 History: Received January 01, 1986; Online November 11, 2009


Experiments were performed to evaluate the convective heat transfer coefficient for a flat plate mounted in a wooden model of a roof of a building. The experiments were carried out in a closed-circuit wind tunnel and included parametric adjustments of the roof tilt and Reynolds number, based on the length of the plate. The roof tilt was set at 0, 30, 45, 60, and 90 degrees and the Reynolds number ranged from 58,000 to 250,000. A transient, one lump, thermal approach was used for heat transfer calculations. Due to a separation bubble at the leading edge of the model, i.e., the roof, at angles of attack of less than 40 degrees, the flow became turbulent after reattachment. This resulted in a higher heat transfer than previously reported in the literature. At higher angles of attack, the flow was not separated at the leading edge and remained laminar. The heat transfer coefficient for higher angles of attack, i.e., α > 40 deg, was found to be approximately independent of the angle of attack and in good agreement with the previously published results.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In