On the Design of Horizontal Axis Two-Bladed Hinged Wind Turbines

[+] Author and Article Information
K. H. Hohenemser

Washington University, St. Louis, Mo.

A. H. P. Swift

University of Texas, El Paso, Texas

J. Sol. Energy Eng 106(2), 171-176 (May 01, 1984) (6 pages) doi:10.1115/1.3267575 History: Received September 16, 1983; Online November 11, 2009


Hinged two-bladed wind turbines are not necessarily free of disturbing vibrations. The combination of elastic or built-in blade coning with blade flapping about a conventional teeter hinge produces periodic blade angular velocity variations in the blade tip path plane with associated vibrations and dynamic loads. The paper discusses and evaluates various hinge configurations for two-bladed rotors and shows why the conventional teeter hinge leads to nonuniform blade angular velocity in the blade tip path plane. The solution to this problem adopted for two-bladed helicopter rotors, though complex, could be of interest for large wind turbines. A much simpler solution, calling for the suppression of blade flapping by passive blade cyclic pitch variation produced by a strong negative pitch-flap coupling, was found to be practical for upwind tail vane stabilized two-bladed wind turbines.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In