0
RESEARCH PAPERS

Physics Considerations of Solar Energy Conversion

[+] Author and Article Information
A. F. Haught

Thermal Sciences, United Technologies Research Center, East Hartford, Conn. 06108

J. Sol. Energy Eng 106(1), 3-15 (Feb 01, 1984) (13 pages) doi:10.1115/1.3267561 History: Received February 24, 1983; Online November 11, 2009

Abstract

A comparative analysis is presented of the conversion of radiant energy to useful work by thermal and quantum processes. The operation of thermal and quantum converters and the thermodynamic conversion efficiency of each are developed in terms of the mechanism of radiation-matter interaction in thermal and quantum systems. From the analysis the maximum conversion efficiency of a single-collector thermal converter with unconcentrated solar radiation and an ambient (reservoir) temperature of 300 K is 0.540; for the same conditions the maximum conversion efficiency of a single-collector quantum system is 0.309. The analysis is extended to consider the effects on the conversion efficiency of heat reject temperature, cascaded operation, in which the reject heat of the quantum converter is used as the input to a thermal bottoming cycle, and of concentration of the solar radiation. The results obtained represent the thermodynamic limits for radiant energy conversion by thermal and quantum processes, and calculations with solar input serve as a reference against which to judge the performance and capabilities of prospective solar energy conversion systems.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In