The Solar Transmittance of Some Convection Suppression Devices for Solar Energy Applications: An Experimental Study

[+] Author and Article Information
J. G. Symons

Division of Energy Technology, Commonwealth Scientific and Industrial Research Organization, Highett, Victoria, Australia

J. Sol. Energy Eng 104(3), 251-256 (Aug 01, 1982) (6 pages) doi:10.1115/1.3266309 History: Received August 05, 1981; Online November 11, 2009


The solar transmittance of seven convection suppression devices (CDSs) has been measured as a function of both angle of incidence and azimuth angle using a large integrating sphere test facility. The CSD designs tested include a honeycomb and various slat geometries made from FEP Teflon1 film, and a tubular glass honeycomb. All FEP Teflon CSDs tested had solar transmittances not less than 0.94 for angles of incidence up to 45 deg, whereas for the glass tubular CSD, the solar transmittance was not less than 0.87 over the same range. The results for FEP Teflon CSDs compare well with previous theoretical and experimental studies of similar CSDs. Empirical solar transmittance correlation equations have been derived, based on a simple CSD solar transmittance model, and they match the measured performance of the CSDs to within 2 percent. The transmittance, reflectance, and absorptance of each CSD to isotropic diffuse radiation have been determined. The radiation properties data presented provides extensive information on some alternative CSD designs, some of which have not been analysed previously.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In