Optimization of Flow Passage Geometry for Air-Heating, Plate-Type Solar Collectors

[+] Author and Article Information
K. G. T. Hollands, E. C. Shewen

Thermal Engineering Group, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

J. Sol. Energy Eng 103(4), 323-330 (Nov 01, 1981) (8 pages) doi:10.1115/1.3266260 History: Received September 21, 1981; Online November 11, 2009


The effect of the choice of shape and dimensions of the air flow passages in plate-type, air-heating solar collectors is assessed. Particularly examined is their effect on the overall heat transfer coefficient Upf between the air stream and the plate, which has an important effect on collector efficiency. It is emphasized in this study that in comparing various designs of flow passage, they should be compared for the same pressure drop Δp suffered by the air in passing through the collector, and for the same mass flow rate m per unit of collector area. On the basis of this type of comparison, two main conclusions are drawn. First, when the length of the air flow passage L is made less than about 1 m, Upf increases dramatically with decreasing values of L. Second, outside the transition regime, the value of Upf for a V-corrugated absorber plate is from 47 to 300 percent higher than that for a flat absorber plate, depending on whether the flow is laminar or turbulent, and on whether the V-corrugated plate is thermally bonded to the back plate. The first conclusion has led to a proposal for a novel air-heating solar collector design, called the “short-path” design.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In