Research Papers

Characterization of a Laser-Based Heating System Coupled With In Operando Raman Spectroscopy for Studying Solar Thermochemical Redox Cycles

[+] Author and Article Information
Kangjae Lee

Department of Mechanical and
Aerospace Engineering,
University of Florida,
Gainesville, FL 32611-6250

Jonathan R. Scheffe

Department of Mechanical and
Aerospace Engineering,
University of Florida,
Gainesville, FL 32611-6250
e-mail: jscheffe@ufl.edu

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received September 11, 2018; final manuscript received November 22, 2018; published online January 8, 2019. Guest Editors: Tatsuya Kodama, Christian Sattler, Nathan Siegel, Ellen Stechel

J. Sol. Energy Eng 141(2), 021013 (Jan 08, 2019) (7 pages) Paper No: SOL-18-1428; doi: 10.1115/1.4042229 History: Received September 11, 2018; Revised November 22, 2018

A 200 W CO2 laser-based heating system coupled with in operando Raman spectroscopy has been developed. The system delivers highly concentrated radiation capable of driving thermochemical reactions and simulates heat fluxes expected by 3D solar concentrating systems. 10 mol% Gd-doped and pure ceria pellets were prepared and used to characterize the system because of their well-established thermodynamic and kinetic properties, as well as their strong Raman peak due to F2 g symmetrical mode at 460 cm−1. Reduction in an H2 atmosphere has been carried out to investigate the behavior of the full width at half maximum (FWHM) of the F2 g Raman peak resulting from changes in temperature and oxidation state. For both samples, an increase in temperature during heating in air (i.e., fully oxidized) resulted in a peak shift toward low wavenumber and an increase of FWHM. The FWHM versus temperature curves were then measured for controlled reduction extents ranging between sample averaged nonstoichiometries of δ = 0–0.209 as a function of temperature. At a fixed temperature, Gd-doped ceria exhibited an increase in FWHM with increasing reduction extent until δ = 0.056. At greater reduction extents, the FWHM decreased with increasing reduction extents. We attribute this to changes in the lattice parameter caused by the eventual formation of intermediate cubic Ce2O3 at the radiated surface. This study demonstrates the promise of utilizing Raman spectroscopy to probe thermochemical reactions in operando. Going forward, we expect that this will be an especially promising tool for characterizing emerging thermochemical materials with complex phase equilibria, especially for nonequilibrium processes.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Concepcion, J. , House, R. , Papanikolas, J. , and Meyer, T. , 2012, “ Chemical Approaches to Artificial Photosynthesis,” Proc. Natl. Acad. Sci. U. S. A., 109(39), pp. 15560–15564. [CrossRef] [PubMed]
Blankenship, R. , Tiede, D. , Barber, J. , Brudvig, G. , Fleming, G. , Ghirardi, M. , Gunner, M. , Junge, W. , Kramer, D. , Melis, A. , Moore, T. , Moser, C. , Nocera, D. , Nozik, A. , Ort, D. , Parson, W. , Prince, R. , and Sayre, R. , 2011, “ Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science, 332(6031), pp. 805–809. [CrossRef] [PubMed]
Kodama, T. , and Gokon, N. , 2007, “ Thermochernical Cycles for High-Temperature Solar Hydrogen Production,” Chem. Rev., 107(10), pp. 4048–4077. [CrossRef] [PubMed]
Romero, M. , and Steinfeld, A. , 2012, “ Concentrating Solar Thermal Power and Thermochemical Fuels,” Energy Environ. Sci., 5(11), pp. 9234–9245. [CrossRef]
Schulz, H. , 1999, “ Short History and Present Trends of Fischer-Tropsch Synthesis,” Appl. Catal., A, 186(1–2), pp. 3–12. [CrossRef]
Riedel, T. , Schulz, H. , Schaub, G. , Jun, K. , Hwang, J. , and Lee, K. , 2003, “ Fischer-Tropsch on Iron With H-2/CO and H-2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer-Tropsch Regime and Construction of the Catalyst,” Top. Catal., 26(1–4), pp. 41–54. [CrossRef]
Omar, S. , Wachsman, E. , Jones, J. , and Nino, J. , 2009, “ Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems,” J. Am. Ceram. Soc., 92(11), pp. 2674–2681. [CrossRef]
Teocoli, F. , and Esposito, V. , 2014, “ Viscoelastic Properties of Doped-Ceria Under Reduced Oxygen Partial Pressure,” Scr. Mater., 75, pp. 82–85. [CrossRef]
Chueh, W. , and Haile, S. , 2010, “ A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation,” Philos. Trans. R. Soc. A, 368(1923), pp. 3269–3294. [CrossRef]
Gopal, C. , and Haile, S. , 2014, “ An Electrical Conductivity Relaxation Study of Oxygen Transport in Samarium Doped Ceria,” J. Mater. Chem. A, 2(7), pp. 2405–2417. [CrossRef]
Chueh, W. , and Haile, S. , 2009, “ Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2,” Chemsuschem, 2(8), pp. 735–739. [CrossRef] [PubMed]
Marxer, D. , Furler, P. , Takacs, M. , and Steinfeld, A. , 2017, “ Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O-2 With High Selectivity, Stability, Conversion, and Efficiency,” Energy Environ. Sci., 10(5), pp. 1142–1149. [CrossRef]
McDaniel, A. , Miller, E. , Arifin, D. , Ambrosini, A. , Coker, E. , O'Hayre, R. , Chueh, W. , and Tong, J. , 2013, “ Sr- and Mn-Doped LaAlO3-Delta for Solar Thermochemical H-2 and CO Production,” Energy Environ. Sci., 6(8), pp. 2424–2428. [CrossRef]
Chueh, W. , Falter, C. , Abbott, M. , Scipio, D. , Furler, P. , Haile, S. , and Steinfeld, A. , 2010, “ High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria,” Science, 330(6012), pp. 1797–1801. [CrossRef] [PubMed]
Furler, P. , Scheffe, J. , and Steinfeld, A. , 2012, “ Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor,” Energy Environ. Sci., 5(3), pp. 6098–6103. [CrossRef]
Ackermann, S. , Sauvin, L. , Castiglioni, R. , Rupp, J. , Scheffe, J. , and Steinfeld, A. , 2015, “ Kinetics of CO2 Reduction Over Nonstoichiometric Ceria,” J. Phys. Chem. C, 119(29), pp. 16452–16461. [CrossRef]
Takacs, M. , Scheffe, J. , and Steinfeld, A. , 2015, “ Oxygen Nonstoichiometry and Thermodynamic Characterization of Zr Doped Ceria in the 1573–1773 K Temperature Range,” Phys. Chem. Chem. Phys., 17(12), pp. 7813–7822. [CrossRef] [PubMed]
Warren, K. , and Scheffe, J. , 2018, “ Kinetic Insights Into the Reduction of Ceria Facilitated Via the Partial Oxidation of Methane,” Mater. Today Energy, 9, p. 10.
Chueh, W. , McDaniel, A. , Grass, M. , Hao, Y. , Jabeen, N. , Liu, Z. , Haile, S. , McCarty, K. , Bluhm, H. , and El Gabaly, F. , 2012, “ Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed in Operando,” Chem. Mater., 24(10), pp. 1876–1882. [CrossRef]
Bonk, A. , Maier, A. , Schlupp, M. , Burnat, D. , Remhof, A. , Delmelle, R. , Steinfeld, A. , and Vogt, U. , 2015, “ The Effect of Dopants on the Redox Performance, Microstructure and Phase Formation of Ceria,” J. Power Sources, 300, pp. 261–271. [CrossRef]
Coker, E. , Ambrosini, A. , Rodriguez, M. , and Miller, J. , 2011, “ Ferrite-YSZ Composites for Solar Thermochemical Production of Synthetic Fuels: In Operando Characterization of CO2 Reduction,” J. Mater. Chem., 21(29), pp. 10767–10776. [CrossRef]
Lai, W. , and Haile, S. , 2005, “ Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria,” J. Am. Ceram. Soc., 88(11), pp. 2979–2997. [CrossRef]
Xie, S. , Iglesia, E. , and Bell, A. , 2001, “ Effects of Temperature on the Raman Spectra and Dispersed Oxides,” J. Phys. Chem. B, 105(22), pp. 5144–5152. [CrossRef]
Santoro, M. , Lin, J. , Mao, H. , and Hemley, R. , 2004, “ In Situ High P-T Raman Spectroscopy and Laser Heating of Carbon Dioxide,” J. Chem. Phys., 121(6), pp. 2780–2787. [CrossRef] [PubMed]
Weber, W. H. , Hass, K. C. , and McBride, J. R. , 1993, “ Raman-Study of Ceo2—2nd-Order Scattering, Lattice-Dynamics, and Particle-Size Effects,” Phys. Rev. B, 48(1), pp. 178–185. [CrossRef]
McBride, J. R. , Hass, K. C. , Poindexter, B. D. , and Weber, W. H. , 1994, “ Raman and X-Ray Studies of Ce1-XREXO2-Y, Where Re=LA, PR, ND, EU, GD, AND Tb,” J. Appl. Phys., 76(4), pp. 2435–2441. [CrossRef]
Rupp, J. , Scherrer, B. , and Gauckler, L. , 2010, “ Engineering Disorder in Precipitation-Based Nano-Scaled Metal Oxide Thin Films,” Phys. Chem. Chem. Phys., 12(36), pp. 11114–11124. [CrossRef] [PubMed]
Maher, R. , and Cohen, L. , 2008, “ Raman Spectroscopy as a Probe of Temperature and Oxidation State for Gadolinium-Doped Ceria Used in Solid Oxide Fuel Cells,” J. Phys. Chem. A, 112(7), pp. 1497–1501. [CrossRef] [PubMed]
Kanakaraju, S. , Mohan, S. , and Sood, A. , 1997, “ Optical and Structural Properties of Reactive Ion Beam Sputter Deposited CeO2 Films,” Thin Solid Films, 305(1–2), pp. 191–195. [CrossRef]
Wang, J. , Tai, Y. , Dow, W. , and Huang, T. , 2001, “ Study of Ceria-Supported Nickel Catalyst and Effect of Yttria Doping on Carbon Dioxide Reforming of Methane,” Appl. Catal., A, 218(1–2), pp. 69–79. [CrossRef]
Escribano, V. , Lopez, E. , Panizza, M. , Resini, C. , Amores, J. , and Busca, G. , 2003, “ Characterization of Cubic Ceria-Zirconia Powders by X-Ray Diffraction and Vibrational and Electronic Spectroscopy,” Solid State Sci., 5(10), pp. 1369–1376. [CrossRef]
Stelzer, N. , Nolting, J. , and Riess, I. , 1995, “ Phase-Diagram of Nonstoichiometric 10 Mol-Percent Gd2o3-Doped Cerium Oxide Determined From Specific-Heat Measurements,” J. Solid State Chem., 117(2), pp. 392–397. [CrossRef]
Dohcevic-Mitrovic, Z. , Scepanovic, M. , Grujic-Brojcin, M. , Popovic, Z. , Boskovic, S. , Matovic, B. , Zinkevich, M. , and Aldinger, F. , 2006, “ The Size and Strain Effects on the Raman Spectra of Ce1-xNdxO2-Delta (0 <= x <= 0.25) Nanopowders,” Solid State Commun., 137(7), pp. 387–390. [CrossRef]
Lin, X. , Li, L. , Li, G. , and Su, W. , 2001, “ Transport Property and Raman Spectra of Nanocrystalline Solid Solutions Ce0.8Nd0.2O2-Delta With Different Particle Size,” Mater. Chem. Phys., 69(1–3), pp. 236–240. [CrossRef]
Taniguchi, T. , Watanabe, T. , Sugiyama, N. , Subramani, A. , Wagata, H. , Matsushita, N. , and Yoshimura, M. , 2009, “ Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy,” J. Phys. Chem. C, 113(46), pp. 19789–19793. [CrossRef]
Chandradass, J. , Nam, B. , and Kim, K. , 2009, “ Fine Tuning of Gadolinium Doped Ceria Electrolyte Nanoparticles Via Reverse Microemulsion Process,” Colloids Surf., A, 348(1–3), pp. 130–136. [CrossRef]
Guo, M. , Lu, J. , Wu, Y. , Wang, Y. , and Luo, M. , 2011, “ UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria,” Langmuir, 27(7), pp. 3872–3877. [CrossRef] [PubMed]
Nakajima, A. , Yoshihara, A. , and Ishigame, M. , 1994, “ Defect-Induced Raman-Spectra in Doped Ceo2,” Phys. Rev. B, 50(18), pp. 13297–13307. [CrossRef]
Mandal, B. , Grover, V. , Roy, M. , and Tyagi, A. , 2007, “ X-Ray Diffraction and Raman Spectroscopic Investigation on the Phase Relations in Yb2O3- and Tm2O3-Substituted CeO2,” J. Am. Ceram. Soc., 90(9), pp. 2961–2965. [CrossRef]
Lee, Y. , He, G. , Akey, A. , Si, R. , Flytzani-Stephanopoulos, M. , and Herman, I. , 2011, “ Raman Analysis of Mode Softening in Nanoparticle CeO2-Delta and Au-CeO2-Delta During CO Oxidation,” J. Am. Chem. Soc., 133(33), pp. 12952–12955. [CrossRef] [PubMed]
Klemens, P. , 1966, “ Anharmonic Decay of Optical Phonons,” Phys. Rev., 148(2), p. 845. [CrossRef]
Balkanski, M. , Wallis, R. , and Haro, E. , 1983, “ Anharmonic Effects in Light-Scattering Due to Optical Phonons in Silicon,” Phys. Rev. B, 28(4), pp. 1928–1934. [CrossRef]
Walrafen, G. , Fisher, M. , Hokmabadi, M. , and Yang, W. , 1986, “ Temperature-Dependence of the Low-Frequency Nd High-Frequency Raman-Scattering from Liquid Water,” J. Chem. Phys., 85(12), pp. 6970–6982. [CrossRef]
Dohcevic-Mitrovic, Z. , Radovic, M. , Scepanovic, M. , Grujic-Brojcin, M. , Popovic, Z. , Matovic, B. , and Boskovic, S. , 2007, “ Temperature-Dependent Raman Study of Ce0.75Nd0.25O2-Delta Nanocrystals,” Appl. Phys. Lett., 91(20), pp. 203118-1–203118-3.
Cowley, R. , 1965, “ Raman Scattering From Crystals of Diamond Structure,” J. Phys. Arch., 26(11), p. 659. [CrossRef]
Pine, A. , and Tannenwald, P. , 1969, “ Temperature Dependence of Raman Linewidth and Shift in Alpha-Quartz,” Phys. Rev., 178(3), p. 1424. [CrossRef]
Spanier, J. , Robinson, R. , Zheng, F. , Chan, S. , and Herman, I. , 2001, “ Size-Dependent Properties of CeO2-y Nanoparticles as Studied by Raman Scattering,” Phys. Rev. B, 64(24), pp. 245407-1–245407-8.
Richter, H. , Wang, Z. , and Ley, L. , 1981, “ The One Phonon Raman-Spectrum in Microcrystalline Silicon,” Solid State Commun., 39(5), pp. 625–629. [CrossRef]
Ban, Y. , and Nowick, A. S. , 1972, “ Defects and Mass Transport in Reduced CeO2 Single Crystals,” Fifth Materials Research Symposium, Gaithersburg, MD, Oct. 18, p. 13.
Ackermann, S. , and Steinfeld, A. , 2017, “ Spectral Hemispherical Reflectivity of Nonstoichiometric Cerium Dioxide,” Sol. Energy Mater. Sol. Cells, 159, pp. 167–171. [CrossRef]
Maher, R. , Shearing, P. , Brightman, E. , Brett, D. , Brandon, N. , and Cohen, L. , 2016, “ Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy,” Adv. Sci., 3(1), pp. 1500146-1–1500146-8.
Kosacki, I. , Suzuki, T. , Anderson, H. , and Colomban, P. , 2002, “ Raman Scattering and Lattice Defects in Nanocrystalline CeO2 Thin Films,” Solid State Ion., 149(1–s2), pp. 99–105.
Tsunekawa, S. , Sivamohan, R. , Ito, S. , Kasuya, A. , and Fukuda, T. , 1999, “ Structural Study on Monosize CeO2-x Nano-Particles,” Nanostructured Mater., 11(1), pp. 141–147. [CrossRef]
Zhang, F. , Chan, S. , Spanier, J. , Apak, E. , Jin, Q. , Robinson, R. , and Herman, I. , 2002, “ Cerium Oxide Nanoparticles: Size-Selective Formation and Structure Analysis,” Appl. Phys. Lett., 80(1), pp. 127–129. [CrossRef]
Wu, L. J. , Wiesmann, H. J. , Moodenbaugh, A. R. , Klie, R. F. , Zhu, Y. M. , Welch, D. O. , and Suenaga, M. , 2004, “ Oxidation State and Lattice Expansion of CeO2-x Nanoparticles as a Function of Particle Size,” Phys. Rev. B, 69(12), pp. 125415-1–125415-9.
Deshpande, S. , Patil, S. , Kuchibhatla, S. , and Seal, S. , 2005, “ Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide,” Appl. Phys. Lett., 87(13), pp. 133113-1–133113-3.
Hailstone, R. K. , DiFrancesco, A. G. , Leong, J. G. , Allston, T. D. , and Reed, K. J. , 2009, “ A Study of Lattice Expansion in CeO2 Nanoparticles by Transmission Electron Microscopy,” J. Phys. Chem. C, 113(34), pp. 15155–15159. [CrossRef]
Zhang, F. , Wang, P. , Koberstein, J. , Khalid, S. , and Chan, S. W. , 2004, “ Cerium Oxidation State in Ceria Nanoparticles Studied With X-Rray Photoelectron Spectroscopy and Absorption Near Edge Spectroscopy,” Surf. Sci., 563(1–3), pp. 74–82. [CrossRef]
Perrichon, V. , Laachir, A. , Bergeret, G. , Frety, R. , Tournayan, L. , and Touret, O. , 1994, “ Reduction of Cerias With Different Textures by Hydrogen and Their Reoxidation by Oxygen,” J. Chem. Soc., Faraday Trans., 90(5), pp. 773–781. [CrossRef]


Grahic Jump Location
Fig. 1

Left: A schematic of a laser-based heating system coupled with in operando Raman spectroscopy. Center: sectional view rendering of a pellet within a sample holder. The reacting pelletized sample is placed within the porous Al2O3 sample holder (6-way CF cube chamber), and irradiated with a CO2 heating laser from the front, and impinged with a 532 nm Raman laser from the back. A bored hole through the side provides access for thermocouple measurements. Right: photograph of a Gd-doped ceria pellet contained within the sample holder.

Grahic Jump Location
Fig. 2

Normalized Raman spectra of fully oxidized ceria and Gd-doped ceria at 28 °C in 100% Ar atmosphere

Grahic Jump Location
Fig. 3

(a) Raman spectra of fully oxidized undoped ceria during heating from 28 °C to 595 °C and (b) FWHM and Raman peak shift of fully oxidized undoped ceria versus temperature

Grahic Jump Location
Fig. 4

(a) Raman spectra of fully oxidized Gd-doped ceria during heating from 28 °C to 400 °C and (b) FWHM and Raman peak shift of fully oxidized Gd-doped ceria versus temperature

Grahic Jump Location
Fig. 5

Normalized Raman spectra of fully oxidized and reduced Gd-doped ceria (δ = 0.209)

Grahic Jump Location
Fig. 6

(a) FWHM versus temperature curves of Gd-doped ceria with various reduction extents (from δ = 0 to δ = 0.209) during cooling and (b) FWHM versus reduction extent of Gd-doped ceria with various temperatures (from T = 33 °C to T = 40 °C) during cooling. Lines are drawn for visual purposes only.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In