0
Review Article

Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes

[+] Author and Article Information
Nur Alom

Department of Mechanical Engineering,
National Institute of Technology Meghalaya,
Shillong 793003, India
e-mail: nuralomme19@gmail.com

Ujjwal K. Saha

Professor
Department of Mechanical Engineering,
Indian Institute of Technology Guwahati,
Guwahati 781039, India
e-mail: saha@iitg.ac.in

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received July 21, 2018; final manuscript received October 13, 2018; published online November 26, 2018. Assoc. Editor: Yves Gagnon.

J. Sol. Energy Eng 141(3), 030801 (Nov 26, 2018) (15 pages) Paper No: SOL-18-1334; doi: 10.1115/1.4041848 History: Received July 21, 2018; Revised October 13, 2018

The blade profiles and blade shapes of vertical-axis Savonius wind turbine rotors have undergone a series of changes over the past three decades. Wind turbine aerodynamicists have carried out numerous computational and experimental research to arrive at a suitable rotor blade design configuration so as to harvest maximum energy from the available wind. In most of the studies, the geometric and aerodynamic aspects of the rotor blade design have been reported. Interestingly enough, a couple of review papers got published in the area of Savonius rotors during the last one decade. However, there is not a single piece of literature that gives a comprehensive and a systematic review of Savonius rotor blade profiles and shapes. This paper aims to collate all the research findings related to these blade profiles/shapes and makes an attempt to highlight their features together with future recommendations.

Copyright © 2019 by ASME
Topics: Rotors , Blades
Your Session has timed out. Please sign back in to continue.

References

Amano, R. S. , 2017, “ Review of Wind Turbine Research in 21st Century,” ASME J. Energy Resour. Technol., 139(5), p. 050801. [CrossRef]
Prabhukhot, P. R. , and Prabhukhot, A. R. , 2017, “ Computer Analysis of S822 Aerofoil Section for Blades of Small Wind Turbines at Low Wind Speed,” ASME J. Sol. Energy Eng., 139, p. 051008. [CrossRef]
Müller, G. , Jentsch, M. F. , and Stoddart, E. , 2009, “ Vertical Axis Resistance Type Wind Turbines for Use in Buildings,” Renewable Energy, 34(5), pp. 1407–1412. [CrossRef]
Gupta, A. K. , 2015, “ Efficient Wind Energy Conversion: Evolution to Modern Design,” ASME J. Energy Resour. Technol., 137(5), p. 051201. [CrossRef]
Spera, D. A. , 2009, Wind Turbine Technology, American Society of Mechanical Engineers, New York.
Alom, N. , and Saha, U. K. , 2018, “ Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments,” Energy, 152, pp. 277–290. [CrossRef]
Wong, K. H. , Chong, W. T. , Sukiman, N. L. , Poh, S. C. , Shiah, Y.-C. , and Wang, C.-T. , 2017, “ Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review,” Renewable Sustainable Energy Rev., 73, pp. 904–921. [CrossRef]
Modi, V. , and Fernando, M. , 1989, “ On the Performance of the Savonius Wind Turbine,” ASME J. Sol. Energy Eng., 111(1), pp. 71–81. [CrossRef]
Ogawa, T. , Yoshida, H. , and Yokota, Y. , 1989, “ Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine,” ASME J. Fluids Eng., 111(1), pp. 53–58. [CrossRef]
Plourde, B. D. , Abraham, J. P. , Mowry, G. , and Minkowycz, W. , 2012, “ Simulations of Three-Dimensional Vertical-Axis Turbines for Communications Applications,” Wind Eng., 36(4), pp. 443–454. [CrossRef]
Menet, J. L. , 2004, “ A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study,” Renewable Energy, 29(11), pp. 1843–1862. [CrossRef]
Rahman, M. , Morshed, K. N. , and Mian, A. , 2010, “ Aerodynamic Performance Analysis of Three Bladed Savonius Wind Turbine With Different Overlap Ratios and at Various Reynolds Number,” ASME Paper No. IMECE2010-40272.
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” ASME J. Energy Resour. Technol., 137(5), p. 051207. [CrossRef]
Manwell, J. F. , Mcgowan, J. G. , and Rogers, A. L. , 2009, Wind Energy Explained: Theory, Design and Application, Wiley, Chichester, UK.
The, J. , and Yu, H. , 2017, “ A Critical Review on the Simulations of Wind Turbine Aerodynamics Focusing on Hybrid RANS-LES Methods,” Energy, 138, pp. 257–289. [CrossRef]
Johnson, G. L. , 2006, “ Wind Energy Systems,” Kansas State University, Manhattan, KS.
Van Treuren, K. W. , 2015, “ Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions,” ASME J. Energy Resour. Technol., 137(5), p. 51208. [CrossRef]
Ohya, Y. , Miyazaki, J. , Göltenbott, U. , and Watanabe, K. , 2017, “ Power Augmentation of Shrouded Wind Turbines in a Multirotor System,” ASME J. Energy Resour. Technol., 139(5), p. 051202. [CrossRef]
Emmanuel, B. , and Jun, W. , 2011, “ Numerical Study of a Six-Bladed Savonius Wind Turbine,” ASME J. Sol. Energy Eng., 133(4), p. 044503. [CrossRef]
Bhutta, M. M. A. , Hayat, N. , Farooq, A. U. , Ali, Z. , Jamil, S. R. , and Hussain, Z. , 2012, “ Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques,” Renewable Sustainable Energy Rev., 16(4), pp. 1926–1939. [CrossRef]
Akwa, J. V. , Vielmo, H. A. , and Petry, A. P. , 2012, “ A Review on the Performance of Savonius Wind Turbines,” Renewable Sustainable Energy Rev., 16(5), pp. 3054–3064. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors,” Renewable Sustainable Energy Rev., 24, pp. 73–83. [CrossRef]
Al-Kayiem, H. H. , Bhayo, B. A. , and Assadi, M. , 2016, “ Comparative Critique on the Design Parameters and Their Effect on the Performance of S-Rotors,” Renewable Energy, 99, pp. 1306–1317. [CrossRef]
Chen, L. , Chen, J. , and Zhang, Z. , 2018, “ Review of the Savonius Rotor's Blade Profile and Its Performance,” J. Renewable Sustainable Energy, 10(1), p. 013306. [CrossRef]
Golecha, K. , Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2012, “ Review on Savonius Rotor for Harnessing Wind Energy,” Wind Eng., 36(6), pp. 605–646. [CrossRef]
Kang, C. , Liu, H. , and Yang, X. , 2014, “ Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors,” Renewable Sustainable Energy Rev., 33, pp. 499–508. [CrossRef]
Alom, N. , and Saha, U. K. , 2018, “ Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor,” ASME J. Energy Resour. Technol., 140(5), p. 050801. [CrossRef]
Tummala, A. , Velamati, R. K. , Sinha, D. K. , Indraja, V. , and Krishna, V. H. , 2016, “ A Review on Small Scale Wind Turbines,” Renewable Sustainable Energy Rev., 56, pp. 1351–1371. [CrossRef]
Abraham, J. P. , Plourde, B. D. , Mowry, G. S. , Minkowycz, W. J. , and Sparrow, E. M. , 2012, “ Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation,” J. Renewable Sustainable Energy, 4(4), p. 042703. [CrossRef]
Sheldahl, R. E. , Feltz, L. V. , and Blackwell, B. F. , 1978, “ Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors,” J. Energy, 2(3), pp. 160–164. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Numerical Investigation to Assess an Optimal Blade Profile for the Drag Based Vertical Axis Wind Turbine,” ASME Paper No. IMECE2013-64001.
Roy, S. , and Saha, U. K. , 2015, “ Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine,” Appl. Energy, 137, pp. 117–125. [CrossRef]
Fujisawa, N. , and Gotoh, F. , 1994, “ Experimental Study on the Aerodynamic Performance of a Savonius Rotor,” ASME J. Sol. Energy Eng., 116(3), pp. 148–152. [CrossRef]
Fujisawa, N. , Ishimatsu, K. , and Kage, K. , 1995, “ A Comparative Study of Navier-Stokes Calculations and Experiments for the Savonius Rotor,” ASME J. Sol. Energy Eng., 117(4), pp. 344–346. [CrossRef]
Sivasegaram, S. , and Sivapalan, S. , 1983, “ Augmentation of Power in Slow-Running Vertical-Axis Wind Rotors Using Multiple Vanes,” Wind Eng., 7(1), pp. 12–19. http://adsabs.harvard.edu/abs/1983WiEng...7...12S
Huda, M. D. , Selim, M. A. , Islam, A. K. M. S. , and Islam, M. Q. , 1992, “ The Performance of an S-Shaped Savonius Rotor With a Deflecting Plate,” Int. Energy J., 14, pp. 25–32.
Rajkumar, M. J. , and Saha, U. K. , 2006, “ Valve-Aided Twisted Savonius Rotor,” Wind Eng., 30(3), pp. 243–254. [CrossRef]
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2008, “ Experiments Investigations on Single Stage, Two Stages and Three Stages Conventional Savonius Rotor,” Int. J. Energy Res., 32(10), pp. 877–895. [CrossRef]
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2009, “ Performance Tests on Helical Savonius Rotors,” Renewable Energy, 34(3), pp. 521–529. [CrossRef]
D'Alessandro, V. , Montelpare, S. , Ricci, R. , and Secchiaroli, A. , 2010, “ Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance,” Energy, 35(8), pp. 3349–3363. [CrossRef]
Nasef, M. H. , El-Askary, W. A. , AbdEl-hamid, A. A. , and Gad, H. E. , 2013, “ Evaluation of Savonius Rotor Performance: Static and Dynamic Studies,” J. Wind Eng. Ind. Aerodyn., 123, pp. 1–11. [CrossRef]
Banerjee, A. , Roy, S. , Mukherjee, P. , and Saha, U. K. , 2014, “ Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine,” ASME Paper No. GTINDIA2014-8141.
Jeon, K. S. , Jeong, J. I. , Pan, J. K. , and Ryu, K. W. , 2015, “ Effects of End Plates With Various Shapes and Sizes on Helical Savonius Wind Turbines,” Renewable Energy, 79(1), pp. 167–176. [CrossRef]
Alom, N. , Kolaparthi, S. C. , Gadde, S. C. , and Saha, U. K. , 2016, “ Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations,” ASME Paper No. OMAE2016-55095.
Lee, J. H. , Lee, Y. T. , and Lim, H. C. , 2016, “ Effect of Twist Angle on the Performance of Savonius Wind Turbine,” Renewable Energy, 89, pp. 231–244. [CrossRef]
Ricci, R. , Romagnoli, R. , Montelpare, S. , and Vitali, D. , 2016, “ Experimental Study on a Savonius Wind Rotor for Street Lighting Systems,” Appl. Energy, 161, pp. 143–152. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Investigation on the Effect of Aspect Ratio Into the Performance of Savonius Rotor,” ASME Paper No. GTINDIA2013-3729.
Alexander, A. J. , and Holownia, B. P. , 1978, “ Wind Tunnel Tests on a Savonius Rotor,” J. Ind. Aerodyn., 3(4), pp. 343–351. [CrossRef]
Jian, C. , Kumbernuss, J. , Linhua, Z. , Lin, L. , and Hongxing, Y. , 2012, “ Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine's Performance,” ASME J. Sol. Energy Eng., 134(1), p. 011016. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine,” Procedia Eng., 51, pp. 694–702. [CrossRef]
Ushiyama, I. , Nagai, H. , and Mino, M. , 1982, “ The Optimum Design Configurations of Savonius Wind Turbines,” 17th Intersociety Energy Conversion Engineering Conference (IECEC ‘82), Los Angeles, CA, Aug. 8–12, Vol. 4, pp. 2096–2101.
Ushiyama, I. , and Nagai, H. , 1988, “ Optimum Design Configurations and Performance of Savonius Rotors,” Wind Eng., 12(1), pp. 59–75. https://www.jstor.org/stable/43749329?seq=1#page_scan_tab_contents
Khan, J. R. , Bashar, M. M. , Rahman, M. , Bashar, M. M. , Rahman, M. , and Khan, J. , 2013, “ Computational Studies on the Flow Field of Various Shapes-Bladed Vertical Axis Savonius Turbine in Static Condition,” ASME Paper No. IMECE2013-65081.
Alom, N. , and Saha, U. K. , 2017, “ Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed Savonius Rotor,” ASME Paper No. GT2017-64137.
Saha, U. K. , Thotla, S. , and Maity, D. , 2008, “ Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments,” J. Wind Eng. Ind. Aerodyn., 96(8–9), pp. 1359–1375. [CrossRef]
Alom, N. , Kumar, N. , and Saha, U. K. , 2017, “ Aerodynamic Performance of an Elliptical-Bladed Savonius Rotor Under Influence Number of Blades and Shaft,” ASME Paper No. GTINDIA2017-4554.
Plourde, B. D. , Abraham, J. P. , Mowry, G. , and Minkowycz, W. , 2011, “ An Experimental Investigation of a Large, Vertical-Axis Wind Turbine: Effects of Venting and Capping,” Wind Eng., 35(2), pp. 213–220. [CrossRef]
Roy, S. , and Saha, U. K. , 2014, “ An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine,” Energy Convers. Manage., 86, pp. 418–427. [CrossRef]
Ross, I. , and Altman, A. , 2011, “ Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines,” J. Wind Eng. Ind. Aerodyn., 99(5), pp. 523–538. [CrossRef]
Blackwell, B. F. , Sheldahl, R. E. , and Feltz, L. V. , 1977, “ Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors,” Sandia Laboratories, Albuquerque, NM, Sand 76-0131 Under Act AT/29-11, p. 789.
Hayashi, T. , Li, Y. , and Hara, Y. , 2005, “ Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor,” JSME Int. J. Ser. B, 48(1), pp. 9–16. [CrossRef]
Jaohindy, P. , McTavish, S. , Garde, F. , and Bastide, A. , 2013, “ An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios,” Renewable Energy, 55, pp. 286–295. [CrossRef]
Irabu, K. , and Roy, J. N. , 2011, “ Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State,” Exp. Therm. Fluid Sci., 35(4), pp. 653–659. [CrossRef]
Chauvin, A. , and Benghrib, D. , 1989, “ Drag and Lift Coefficients Evolution of a Savonius Rotor,” Exp. Fluids, 8(1–2), pp. 118–20. [CrossRef]
Roy, S. , and Ducoin, A. , 2016, “ Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine,” Energy Convers. Manage., 121, pp. 281–296. [CrossRef]
Damak, A. , Driss, Z. , and Abid, M. S. , 2013, “ Experimental Investigation of Helical Savonius Rotor With a Twist of 180°,” Renewable Energy, 52, pp. 136–142. [CrossRef]
Modi, V. J. , Roth, N. J. , and Pittalwala, A. , 1983, “ Blade Configurations and Performance of the Savonius Rotor With Application to an Irrigation System in Indonesia,” ASME J. Sol. Energy Eng., 105(3), pp. 294–299. [CrossRef]
Grinspan, A. S. , Saha, U. K. , and Mahanta, P. , 2004, “ Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor,” Int. Energy J., 5(1), pp. 1–9. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/142
Mojola, O. O. , 1985, “ On the Aerodynamic Design of the Savonius Wind Mill Rotor,” J. Wind Eng. Ind. Aerodyn., 21(2), pp. 223–231. [CrossRef]
Damak, A. , Driss, Z. , and Abid, M. S. , 2018, “ Optimization of the Helical Savonius Rotor Through Wind Tunnel Experiments,” J. Wind Eng. Ind. Aerodyn., 174, pp. 80–93. [CrossRef]
Zhao, Z. , Zheng, Y. , Xu, X. , Liu, W. , and Hu, G. , 2009, “ Research on the Improvement of the Performance of Savonius Rotor Based on Numerical Study,” International Conference on Sustainable Power Generation (SUPERGEN), Nanjing, China, Apr. 6–7.
Dobrev, I. , and Massouh, F. , 2011, “ CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine,” Energy Procedia, 6, pp. 711–720. [CrossRef]
Kianifar, A. , Anbarsooz, M. , and Javadi, M. , 2010, “ Blade Curve Influences on Performance of Savonius Rotors: Experimental and Numerical,” ASME Paper No. FEDSM-ICNMM2010-30919.
Mohamed, M. H. , Janiga, G. , Pap, E. , and Thévenin, D. , 2011, “ Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade,” Energy Convers. Manage., 52(1), pp. 236–242. [CrossRef]
Ferrari, G. , Federici, D. , Schito, P. , Inzoli, F. , and Mereu, R. , 2017, “ CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis,” Renewable Energy, 105, pp. 722–734. [CrossRef]
Fujisawa, N. , 1992, “ On the Torque Mechanism of Savonius Rotors,” J. Wind Eng. Ind. Aerodyn., 40(3), pp. 277–292. [CrossRef]
Menet, J. L. , and Bourabaa, N. , 2004, “ Increase in the Savonius Rotors Efficiency Via a Parametric Investigation,” European Wind Energy Conference, London, Nov. 22–25. https://www.researchgate.net/publication/228957621_Increase_in_the_Savonius_rotors_efficiency_via_a_parametric_investigation
Yakhot, V. , Orszag, S. A. , Thangam, S. , Gatski, T. B. , and Speziale, C. G. , 1992, “ Development of Turbulence Models for Shear Flows by a Double Expansion Technique,” Phys. Fluids, 4(7), pp. 1510–1520. [CrossRef]
Abbaszadeh, M. , and Doroodian, F. , 2012, “ A Numerical Investigation on Effects of the Gap Between Plates of Savonius Vertical Axis Wind Turbines With Different Shapes on Their Performance,” ASME Paper No. GTINDIA2012-9656.
Altan, B. D. , and Atilgan, M. , 2008, “ An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor,” Energy Convers. Manage., 49(12), pp. 3425–3432. [CrossRef]
Shaheen, M. , El-Sayed, M. , and Abdallah, S. , 2015, “ Numerical Study of Two-Bucket Savonius Wind Turbine Cluster,” J. Wind Eng. Ind. Aerodyn., 137, pp. 78–89. [CrossRef]
Akwa, J. V. , Alves da Silva Júnior, G. , and Petry, A. P. , 2012, “ Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics,” Renewable Energy, 38(1), pp. 141–149. [CrossRef]
Howell, R. , Qin, N. , Edwards, J. , and Durrani, N. , 2010, “ Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine,” Renewable Energy, 35(2), pp. 412–422. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor,” Proc. Inst. Mech. Eng., Part A, 227(4), pp. 528–542. [CrossRef]
Newman, 1974, “ Measurements on Savonius Rotor With Variable Gap,” Sherbrooke University Symposium on Wind Energy, Sherbrooke, QC, Canada.
Bach, G. , 1931, “ Untersuchungen uber Savonius-Rotoren und Verwandte Stromungsmaschinen,” Forsch. Geb. Ingenieurwes., 2(6), pp. 218–231. [CrossRef]
Benesh, A. H. , 1988, “ Wind Turbine System Using a Vertical Axis Savonius Type Rotor,” U.S. Patent No. US5494407 A.
Benesh, A. H. , 1989, “ Wind Turbine System Using a Savonius Type Rotor,” U.S. Patent No. 4838757.
Benesh, A. H. , 1992, “ The Benesh Wind Turbine,” 11th ASME Wind Energy Symposium, pp. 153–154.
Song, L. , Yang, Z.-X. , Deng, R.-T. , and Yang, X.-G. , 2013, “ Performance and Structure Optimization for a New Type of Vertical Axis Wind Turbine,” International Conference on Advanced Mechatronic Systems, Luoyang, China, Sept. 25–27, pp. 687–692.
Roy, S. , 2014, “ Aerodynamic Performance Evaluation of a Novel Savonius-Style Wind Turbine Through Unsteady Simulations and Wind Tunnel Experiments,” Ph.D. thesis, Department of Mechanical Engineering, IIT Guwahati, Guwahati, India.
Kacprzak, K. , Liskiewicz, G. , and Sobczak, K. , 2013, “ Numerical Investigation of Conventional and Modified Savonius Wind Turbines,” Renewable Energy, 60, pp. 578–585. [CrossRef]
Savonius, S. J. , 1929, “ Rotor Adapted to Be Driven by Wind or Flowing Water,” U.S. Patent No. 1697574.
Simonds, M. H. , and Bodek, A. , 1964, Performance Test of a Savonius Rotor, Brace Research Institute, McGill University, Montreal, QC, Canada.
Ushiyama, I. , Nagai, H. , and Shinoda, J. , 1986, “ Experimentally Determining the Optimum Design Configuration for Savonius Rotors,” Bull. JSME, 29(258), pp. 4130–4138. [CrossRef]
Zhou, T. , and Rempfer, D. , 2013, “ Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines,” Renewable Energy, 51, pp. 373–381. [CrossRef]
Aldoss, T. , 1984, “ Savonius Rotor Using Swinging Blades as an Augmentation System,” Wind Eng., 8(4), pp. 214–220. https://www.jstor.org/stable/43749743
Aldoss, T. , and Najjar, Y. , 1985, “ Further Development of the Swinging-Blade Savonius Rotor,” Wind Eng., 9(3), pp. 165–170. https://www.jstor.org/stable/43749244
Rahai, H. , and Hefazi, H. , 2005, “ Development of Optimum Design Configuration and Performance for Vertical Axis Wind Turbine,” California Energy Commission, Sacramento, CA, Feasibility Analysis and Final EISG Report.
Reupke, P. , and Probert, S. D. , 1991, “ Slatted-Blade Savonius Wind-Rotors,” Appl. Energy, 40(1), pp. 65–75. [CrossRef]
Tabassum, S. A. , and Probert, S. D. , 1987, “ Vertical-Axis Wind Turbine: A Modified Design,” Appl. Energy, 28(1), pp. 59–67. [CrossRef]
Zhao, Z. , Zheng, Y. , Xu, X. , Liu, W. , and Zhou, D. , 2009, “ Optimum Design Configuration of Helical Savonius Rotor Via Numerical Study,” ASME Paper No. FEDSM2009-78430.
Chong, W. T. , Pan, K. C. , Poh, S. C. , Fazlizan, A. , Oon, C. S. , Badarudin, A. , and Nik-Ghazali, N. , 2013, “ Performance Investigation of a Power Augmented Vertical Axis Wind Turbine for Urban High-Rise Application,” Renewable Energy, 51, pp. 388–397. [CrossRef]
Pope, K. , Rodrigues, V. , Doyle, R. , Tsopelas, A. , Gravelsins, R. , Naterer, G. F. , and Tsang, E. , 2010, “ Effects of Stator Vanes on Power Coefficients of a Zephyr Vertical Axis Wind Turbine,” Renewable Energy, 35(5), pp. 1043–1051. [CrossRef]
Sahim, K. , Santoso, D. , and Radentan, A. , 2013, “ Performance of Combined Water Turbine With Semi Elliptic Section of the Savonius Rotor,” Int. J. Rotating Mach., 2013, p. 985943. [CrossRef]
Alaimo, A. , Esposito, A. , Milazzo, A. , Orlando, C. , and Trentacosti, F. , 2013, “ Slotted Blades Savonius Wind Turbine Analysis by CFD,” Energies, 6(12), pp. 6335–6351. [CrossRef]
Driss, Z. , Mlayeh, O. , Driss, D. , Maaloul, M. , and Abid, M. S. , 2014, “ Numerical Simulation and Experimental Validation of the Turbulent Flow Around a Small Incurved Savonius Wind Rotor,” Energy, 74, pp. 506–517. [CrossRef]
Muscolo, G. G. , and Molfino, R. , 2014, “ From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines,” Energy Procedia, 50, pp. 10–18. [CrossRef]
Roy, S. , Mukherjee, P. , and Saha, U. K. , 2014, “ Aerodynamic Performance Evaluation of Novel Savonius-Style Wind Turbine Under Oriented Jet,” ASME Paper No. GTINDIA2014-8152.
Tartuferi, M. , Alessandro, V. D. , Montelpare, S. , and Ricci, R. , 2015, “ Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems,” Energy, 79, pp. 371–384. [CrossRef]
Sharma, S. , and Sharma, R. K. , 2017, “ CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor,” Energy Convers. Manage., 144, pp. 275–285. [CrossRef]
Sharma, S. , and Sharma, R. K. , 2016, “ Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation,” Energy Convers. Manage., 127, pp. 43–54. [CrossRef]
Mari, M. , Venturini, M. , and Beyene, A. , 2017, “ A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept,” ASME J. Energy Resour. Technol., 139(6), p. 061202. [CrossRef]
Tian, W. , Mao, Z. , An, X. , Zhang, B. , and Wen, H. , 2017, “ Numerical Study of Energy Recovery From the Wakes of Moving Vehicles on Highways by Using a Vertical Axis Wind Turbine,” Energy, 141, pp. 715–728. [CrossRef]
Zhou, Q. , Xu, Z. , Cheng, S. , Huang, Y. , and Xiao, J. , 2018, “ Innovative Savonius Rotors Evolved by Genetic Algorithm Based on 2D-DCT Encoding,” Soft Computing, Springer-Verlag, Berlin.
Ramadan, A. , Yousef, K. , Said, M. , and Mohamed, M. H. , 2018, “ Shape Optimization and Experimental Validation of a Drag Vertical Axis Wind Turbine,” Energy, 151, pp. 839–853. [CrossRef]
Chan, C. M. , Bai, H. L. , and He, D. Q. , 2018, “ Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm,” Appl. Energy, 213, pp. 148–157. [CrossRef]
Sargolzaei, J. , and Kianifar, A. , 2010, “ Neuro–Fuzzy Modeling Tools for Estimation of Torque in Savonius Rotor Wind Turbine,” Adv. Eng. Software, 41(4), pp. 619–626. [CrossRef]
Ferdoues, M. S. , Ebrahimi, S. , and Vijayaraghavan, K. , 2017, “ Multi-Objective Optimization of the Design and Operating Point of a New External Axis Wind Turbine,” Energy, 125, pp. 643–653. [CrossRef]
Roy, S. , Das, R. , and Saha, U. K. , 2018, “ An Inverse Method for Optimization of Geometric Parameters of a Savonius Style Wind Turbine,” Energy Convers. Manage., 155, pp. 116–127. [CrossRef]
Neto, J. X. V. , Junior, E. J. G. , Moreno, S. R. , Ayala, H. V. H. , Mariani, V. C. , and Coelho, L. S. , 2018, “ Wind Turbine Blade Geometry Design Based on Multi-Objective Optimization Using Metaheuristics,” Energy, 162, pp. 645–658. [CrossRef]
Mohammadi, M. , Lakestani, M. , and Mohamed, M. H. , 2018, “ Intelligent Parameter Optimization of Savonius Rotor Using Artificial Neural Network and Genetic Algorithm,” Energy, 143, pp. 56–68. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Illustration of basic parameters and forces of Savonius rotor: (a) basic parameters and (b) lift and drag forces

Grahic Jump Location
Fig. 2

CP versus wind speeds of various ARs [47]

Grahic Jump Location
Fig. 3

CP versus TSR at various ORs [49]

Grahic Jump Location
Fig. 4

Comparison of two- and three-bladed conventional semicircular Savonius rotor [55]

Grahic Jump Location
Fig. 5

Effect of end plates on the performance of a Savonius rotor [52]

Grahic Jump Location
Fig. 6

CP versus TSR at several Re numbers [39]

Grahic Jump Location
Fig. 7

Comparison of CL of Roy and semicircular profile [65]

Grahic Jump Location
Fig. 8

Evolution of Savonius rotor blade profiles and shapes: (a) Semicircular (1929), (b) Semicircular (1930), (c) Bach (1931), (d) Swinging (1985), (e) Benesh (1988), (f) Slatted (1991), (g) Benesh (1996), (h) Twisted (2004), (i) Sistan (2009), (j) Zephyr (2010), (k) Fish-ridged (2013), (l) Semi-elliptic (2013), (m) Elliptical (2013), (n) Slotted (2013), (o) Incurved (2014), (p) Bronzinus (2014), (q) Modified Bach (2014), (r) Roy (2014), (s) Airfoil shape (2015), (t) New elliptical (2016), (u) Multiple quarter semicircular (2016), (v) Multiple miniature semicircular (2017), (w) Spline-curved (2017), and (x)Banki (2017)

Grahic Jump Location
Fig. 9

CP versus TSR of flapped rotor system at various wind speeds [100]

Grahic Jump Location
Fig. 10

RPM versus velocity of twisted bladed rotor with various gap widths [68]

Grahic Jump Location
Fig. 11

The effect of helical angle on CP [102]

Grahic Jump Location
Fig. 12

Optimization of radius of curvature [90]

Grahic Jump Location
Fig. 13

Sectional cut angle of ellipse [44]

Grahic Jump Location
Fig. 14

CP versus TSR at various sectional cut angles of ellipse [44]

Grahic Jump Location
Fig. 15

CP versus TSR of Bronzinus rotor [108]

Grahic Jump Location
Fig. 16

Various dimensions of modified Bach profile [32]

Grahic Jump Location
Fig. 17

Various dimensions of Roy profile [91]

Grahic Jump Location
Fig. 18

Variation of CP with TSR of several rotor profiles [32]

Grahic Jump Location
Fig. 19

Various airfoil shape Savonius rotor profiles [110]

Grahic Jump Location
Fig. 20

CP versus TSR of airfoil type rotor [110]

Grahic Jump Location
Fig. 21

Variation of CP with TSR of multiple quarter rotor [111]

Grahic Jump Location
Fig. 22

Variation of CP with inlet velocity of multiple miniature rotor [112]

Grahic Jump Location
Fig. 23

CP versus TSR of various spline curves [112]

Grahic Jump Location
Fig. 24

Flow chart for the GA process [117]

Grahic Jump Location
Fig. 25

Optimized blade profiles of Savonius rotor: (a) optimized profile by Chen et al. [117] and (b) optimized profile by Ramadan et al. [116]

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In