0
Research Papers

Small-Volume Fabrication of a 144-Cell Assembly for High-Concentrating Photovoltaic Receivers

[+] Author and Article Information
Leonardo Micheli

Environment and Sustainability Institute,
University of Exeter,
Penryn TR10 9FE, UK
e-mail: l.micheli@exeter.ac.uk

Eduardo F. Fernández

Environment and Sustainability Institute,
University of Exeter,
Penryn TR10 9FE, UK
e-mail: E.Fernandez-Fernandez2@exeter.ac.uk

Nabin Sarmah

Department of Energy,
Tezpur University,
Tezpur, Assam 784168, India
e-mail: nabin@tezu.ernet.in

S. Senthilarasu

Environment and Sustainability
Institute, University of Exeter,
Penryn TR10 9FE, UK
e-mail: S.Sundaram@exeter.ac.uk

K. S. Reddy

Department of Mechanical Engineering,
Indian Institute of Technology Madras,
Chennai 600036, India
e-mail: ksreddy@iitm.ac.in

Tapas K. Mallick

Environment and Sustainability Institute,
University of Exeter,
Penryn TR10 9FE, UK
e-mail: T.K.Mallick@exeter.ac.uk

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received February 5, 2015; final manuscript received February 9, 2016; published online March 16, 2016. Assoc. Editor: Carlos F. M. Coimbra.

J. Sol. Energy Eng 138(3), 031008 (Mar 16, 2016) (10 pages) Paper No: SOL-15-1027; doi: 10.1115/1.4032887 History: Received February 05, 2015; Revised February 09, 2016

Concentrating photovoltaic (CPV) is a solution that is gaining attention worldwide as a potential global player in the future energy market. Despite the impressive development in terms of CPV cell efficiency recorded in the last few years, a lack of information on the module's manufacturing is still registered among the documents available in literature. This work describes the challenges faced to fabricate a densely packed cell assembly for 500× CPV applications. The reasons behind the choice of components, materials, and processes are highlighted, and all the solutions applied to overtake the problems experienced after the prototype's production are reported. This article explains all the stages required to achieve a successful fabrication, proven by the results of quality tests and experimental investigations conducted on the prototype. The reliability of the components and the interconnectors is successfully assessed through standard mechanical destructive tests, and an indoor characterization is conducted to investigate the electrical performance. The fabricated cell assembly shows a fill factor as high as 84%, which proves the low series resistance and the lack of mismatches. The outputs are compared with those of commercial assemblies. A cost breakdown is reported and commented: a cost of $0.79/Wp has been required to fabricate each of the cell assembly described in this paper. This value has been found to be positively affected by the economy of scale: a larger number of assemblies produced would have reduced it by 17%.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zheng, C. , and Kammen, D. M. , 2014, “ An Innovation-Focused Roadmap for a Sustainable Global Photovoltaic Industry,” Energy Policy, 67, pp. 159–169. [CrossRef]
European Photovoltaic Industry Association, 2014, “ Global Market Outlook for Photovoltaics 2014–2018.”
IEA PVPS, 2015, “ Trends 2015 in Photovoltaic Applications,” Report No. IEA-PVPS T1-27:2015.
Ameli, N. , and Kammen, D. M. , 2014, “ Innovations in Financing That Drive Cost Parity for Long-Term Electricity Sustainability: An Assessment of Italy, Europe's Fastest Growing Solar Photovoltaic Market,” Energy Sustainable Dev., 19, pp. 130–137. [CrossRef]
Luque, A. , Sala, G. , and Luque-Heredia, I. , 2006, “ Photovoltaic Concentration at the Onset of Its Commercial Deployment,” Prog. Photovoltaics: Res. Appl., 14(5), pp. 413–428. [CrossRef]
Pérez-Higueras, P. , Muñoz, E. , Almonacid, G. , and Vidal, P. G. , 2011, “ High Concentrator Photovoltaics Efficiencies: Present Status and Forecast,” Renewable Sustainable Energy Rev., 15(4), pp. 1810–1815. [CrossRef]
Horowitz, K. , Woodhouse, M. , Lee, H. , and Smestad, G. P. , 2015, “ A Bottom-Up Cost Analysis of High Concentration PV Module,” AIP Conf. Proc., 1679, p. 100001.
Philipps, S. P. , Bett, A. W. , Horowitz, K. , and Kurtz, S. , 2015, “ Current Status of Concentrator Photovoltaic (CPV) Technology,” Report No. TP-6A20-63916.
Talavera, D. L. , Pérez-Higueras, P. , Ruíz-Arias, J. A. , and Fernández, E. F. , 2015, “ Levelised Cost of Electricity in High Concentrated Photovoltaic Grid Connected Systems: Spatial Analysis of Spain,” Appl. Energy, 151, pp. 49–59. [CrossRef]
Kurtz, S. , 2011, “ Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-5200-43208.
Green, M. A. , and Ho-Baillie, A. , 2010, “ Forty-Three Percent Composite Split-Spectrum Concentrator Solar Cell Efficiency,” Prog. Photovoltaics: Res. Appl., 18(1), pp. 42–47. [CrossRef]
Green, M. A. , Emery, K. , Hishikawa, Y. , Warta, W. , and Dunlop, E. D. , 2015, “ Solar Cell Efficiency Tables (Version 46),” Prog. Photovoltaics: Res. Appl., 23(7), pp. 805–812. [CrossRef]
King, R. R. , Law, D. C. , Edmondson, K. M. , Fetzer, C. M. , Kinsey, G. S. , Yoon, H. , Krut, D. D. , Ermer, J. H. , Sherif, R. A. , and Karam, N. H. , 2007, “ Advances in High-Efficiency III-V Multijunction Solar Cells,” Adv. OptoElectron., 2007, pp. 1–8. [CrossRef]
Friedman, D. , King, R. , and Swanson, R. , 2013, “ Editorial: Toward 100 Gigawatts of Concentrator Photovoltaics by 2030,” IEEE J. Photovoltaics, 3(4), pp. 1460–1463. [CrossRef]
Green, M. A. , Emery, K. , Hishikawa, Y. , Warta, W. , and Dunlop, E. D. , 2015, “ Solar Cell Efficiency Tables (Version 45),” Prog. Photovoltaics: Res. Appl., 23(1), pp. 1–9. [CrossRef]
Royne, A. , Dey, C. J. , and Mills, D. R. , 2005, “ Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review,” Sol. Energy Mater. Sol. Cells, 86(4), pp. 451–483. [CrossRef]
Reeser, A. , Wang, P. , Hetsroni, G. , and Bar-Cohen, A. , 2014, “ Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell,” ASME J. Sol. Energy Eng., 136(3), p. 031015. [CrossRef]
Smith, M. K. , Selbak, H. , Wamser, C. C. , Day, N. U. , Krieske, M. , Sailor, D. J. , and Rosenstiel, T. N. , 2014, “ Water Cooling Method to Improve the Performance of Field-Mounted, Insulated, and Concentrating Photovoltaic Modules,” ASME J. Sol. Energy Eng., 136(3), p. 034503. [CrossRef]
Kerzmann, T. , and Schaefer, L. , 2013, “ Flow Rate Optimization of a Linear Concentrating Photovoltaic System,” ASME J. Sol. Energy Eng., 135(2), p. 021009. [CrossRef]
IEC, 2007, “ Concentrator Photovoltaic (CPV) Modules and Assemblies—Design Qualification and Type Approval,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 62108:2007.
Aeby, I. , Aiken, D. , Clevenger, B. , Newman, F. , Patel, P. , Varghese, T. , Dempsey, C. , Flynn, G. , Foresi, J. , Bett, A. W. , McConnell, R. D. , Sala, G. , and Dimroth, F. , 2010, “ High Concentration CPV Reliability Progress at Emcore,” AIP Conf. Proc., 1277(1), pp. 229–232.
Cao, M. , Butler, S. , Benoit, J. T. , Jiang, Y. , Radhakrishnan, R. , Chen, Y. , Bendapudi, S. , and Horne, S. , 2008, “ Thermal Stress Analysis/Life Prediction of Concentrating Photovoltaic Module,” ASME J. Sol. Energy Eng., 130(2), p. 021011. [CrossRef]
Foresi, J. S. , Yang, L. , Blumenfeld, P. , Nagyvary, J. , Flynn, G. , and Aiken, D. , 2010, “ EMCORE Receivers for CPV System Development,” 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, June 20–25, pp. 209–212.
Fisher, B. , Ghosal, K. , Riley, D. , Hansen, C. , King, B. , and Burroughs, S. , 2014, “ Field Performance Modeling of Semprius CPV Systems,” IEEE 40th Photovoltaic Specialists Conference, Denver, CO, June 8–13, pp. 759–765.
Kinsey, G. S. , Nayak, A. , Liu, M. , and Garboushian, V. , 2011, “ Increasing Power and Energy in Amonix CPV Solar Power Plants,” IEEE J. Photovoltaics, 1(2), pp. 213–218. [CrossRef]
Gombert, A. , Wanka, S. , Gerster, E. , van Riesen, S. , Neubauer, M. , Lange, G. , Hamidi, A. , Burke, T. , Stoür, J. , Aipperspach, W. , Taliercio, C. , Mader, L. , Valli, A. , Ziegler, M. , Hepp, S. , Heile, I. , Gerstmaier, T. , and Haarburger, K.-F. , 2012, “ From a 32 m2 System With 90 CPV Modules to a 105 m2 System With 12 CPV Modules-Soitec's New CPV System CX-S530,” AIP Conf. Proc., 1477, pp. 200–203.
Steiner, M. , Bösch, A. , Dilger, A. , Dimroth, F. , Dörsam, T. , Muller, M. , Hornung, T. , Siefer, G. , Wiesenfarth, M. , and Bett, A. W. , 2014, “ FLATCON CPV Module With 36.7% Efficiency Equipped With Four-Junction Solar Cells,” Prog. Photovoltaics: Res. Appl., 23(10), pp. 1323–1329. [CrossRef]
Ghosal, K. , Lilly, D. , Gabriel, J. , Seel, S. , Fisher, B. , Burroughs, S. , Drive, P. , and Suite, C. , 2014, “ Semprius Module and System Results,” IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, June 8–13, pp. 3287–3292.
Wiesenfarth, M. , Dörsam, T. , Eltermann, F. , Hornung, T. , Siefer, G. , Steiner, M. , van Riesen, S. , Neubauer, M. , Boos, A. , Wanka, S. , Gombert, A. , and Bett, A. W. , 2015, “ CPV Module With Fresnel Lens Primary Optics and Homogenizing Secondary Optics,” AIP Conf. Proc., 1679, p. 100007.
Steiner, M. , Kiefel, P. , Siefer, G. , Wiesenfarth, M. , Dimroth, F. , Krause, R. , Gombert, A. , and Bett, A. W. , 2015, “ CPV Module Design Optimization for Advanced Multi-Junction Solar Cell Concepts,” AIP Conf. Proc., 1679, p. 100005.
Plesniak, A. , Garboushian, V. , Liu, M. , Gordon, R. , and Bagienski, W. , 2013, “ An Introduction to the Amonix 8700 Solar Power Generator,” Proc. SPIE, 8821, p. 88210D.
Nickelsen, J., Jr. , Je Sung, P. , and Pycroft, G. , 2013, “ Concentrated Photovoltaic Receiver Package With Stacked Internal Support Features,” U.S. Patent No. 8,502,361, 1(12).
Fork, D. , and Duff, D. , 2007, “ Solar Concentrating Photovoltaic Device With Resilient Cell Package Assembly,” WO Patent No. WO2007130796 A3.
Hasin, S. , and Helfan, R. , 2013, “ Photovoltaic Module Assembly,” U.S. patent application 13/311,113, 1(19).
Duggan, G. , 2014, “ Concentrated Photovoltaic (CPV) Cell Module With Secondary Optical Element and Method of Fabrication,” Patent No. WO2014037722 A1.
Foresi, J. , Babej, A. , Han, R. , Wang, C. , and King, D. , 2014, “ Suncore's CPV Power Plant Deployment in Western China,” IEEE 40th Photovoltaic Specialist Conference, Denver, CO, June 8–13, pp. 3282–3286.
Ghosal, K. , Lilly, D. , Gabriel, J. , Whitehead, M. , Seel, S. , Fisher, B. , Wilson, J. , and Burroughs, S. , 2014, “ Semprius Field Results and Progress in System Development,” IEEE J. Photovoltaics, 4(2), pp. 703–708. [CrossRef]
Kinsey, G. S. , Stone, K. , Brown, J. , and Garboushian, V. , 2010, “ Amonix CPV Solar Power Plants,” 35th IEEE Photovoltaics Specialist Conference, Honolulu, HI, June 20–25, Vol. 3, p. 000820.
2011, “ Soitec CPV Plant Powers COP17 Climate Talks,” Renewable Energy Focus, 12(6).
Lasich, J. , Thomas, I. , Hertaeg, W. , Shirley, D. , Faragher, N. , Erenstrom, N. , Carter, S. , Cox, B. , and Zuo, X. , 2015, “ A 200 kW Central Receiver CPV System,” AIP Conf. Proc., 1679, p. 030004.
Foresi, J. , Wang, C. , Babej, A. , Han, R. , and Liao, T. , 2014, “ Suncore's CPV Technology for Large-Scale Grid-Connected Solar Power Plants,” Light, Energy and the Environment, OSA, Washington, DC.
Timò, G. , 2014, Results of the APOLLON Project and Concentrating Photovoltaic Perspective, Ricerca sul Sistema Energetico, Milan, Italy.
Micheli, L. , Sarmah, N. , Fernández, E. F. , Reddy, K. S. , and Mallick, T. K. , 2014, “ Technical Issues and Challenges in the Fabrication of a 144-Cell 500× Concentrating Photovoltaic Receiver,” IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, June 8–13, pp. 2921–2925.
Mallick, T. , Sarmah, N. , Banerjee, S. , Micheli, L. , Reddy, K. S. , Ghosh, P. , Walker, G. , Choudhury, S. , Pourkashanian, M. , Hamilton, J. , Giddings, D. , Walker, M. , Manickam, K. , Hazara, A. , Balachandran, S. , Lokeswaran, S. , Grant, D. , Nimmo, W. , and Mathew, A. , 2013, “ Design Concept and Configuration of a Hybrid Renewable Energy System for Rural Electrification in India Through BioCPV Project,” 4th International Conference on Advances in Energy Research (ICAER), Mumbai, India, Dec. 10–12, pp. 1662–1670.
Reddy, K. S. , Lokeswaran, S. , Agarwal, P. , and Mallick, T. K. , 2014, “ Numerical Investigation of Micro-Channel Based Active Module Cooling for Solar CPV System,” Energy Procedia, 54, pp. 400–416. [CrossRef]
Micheli, L. , Sarmah, N. , Luo, X. , Reddy, K. S. , and Mallick, T. K. , 2014, “ Design and Production of a 2.5 kWe Insulated Metal Substrate-Based Densely Packed CPV Assembly,” AIP Conf. Proc., 1616, pp. 196–199.
Micheli, L. , Sarmah, N. , Reddy, K. S. , Luo, X. , and Mallick, T. K. , 2015, “ Design, Development, and Analysis of a Densely Packed 500× Concentrating Photovoltaic Cell Assembly on Insulated Metal Substrate,” Int. J. Photoenergy, 2015, pp. 1–18. [CrossRef]
Martinelli, G. , and Stefancich, M. , 2007, “ Solar Cell Cooling,” Concentrator Photovoltaics, Springer, Berlin, pp. 133–149.
Mabille, L. , Mangeant, C. , and Baudrit, M. , 2012, “ Development of CPV Solar Receiver Based on Insulated Metal Substrate (IMS): Comparison With Receiver Based on the Direct Bonded Copper Substrate (DBC)—A Reliability Study,” AIP Conf. Proc., 1477, pp. 289–293.
Berquist Co., “ Baseplate Design Considerations,” Henkel Electronics Materials, Chanhassen, MN, pp. 12–13.
Yoon, J.-W. , Noh, B.-I. , and Jung, S.-B. , 2011, “ Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint,” J. Electron. Mater., 40(9), pp. 1950–1955. [CrossRef]
Ratzker, M. , Pearl, A. , Osterman, M. , Pecht, M. , and Milad, G. , 2014, “ Review of Capabilities of the ENEPIG Surface Finish,” J. Electron. Mater., 43(11), pp. 3885–3897. [CrossRef]
Puttlitz, K. J. , and Stalter, K. A. , 2004, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, CRC Press, Boca Raton, FL.
2014, “ 3C42 Concentrator Triple Junction Solar Cell Datasheet,” Azur Space Solar Power, Heilbronn, Germany.
Calabrese, G. , Gualdi, F. , Baricordi, S. , Bernardoni, P. , Guidi, V. , Pozzetti, L. , and Vincenzi, D. , 2014, “ Numerical Simulation of the Temperature Distortions in InGaP/GaAs/Ge Solar Cells Working Under High Concentrating Conditions Due to Voids Presence in the Solder Joint,” Sol. Energy, 103, pp. 1–11. [CrossRef]
Dusek, K. , 2012, “ Study of the Components Self-Alignment in Surface Mount Technology,” 35th International Spring Seminar on Electronics (ISSE) Technology, Vienna, Austria, May 9–13, pp. 197–200.
“ Concentration PhotoVoltaic (CPV): The Next Generation,” AUREL s.p.a., Modigliana, Italy.
Shah, J. , 2012, “ Estimating Bond Wire Current-Carrying Capacity,” Power Syst. Des., July–August, pp. 22–25.
Hebert, P. , Frost, J. , Cravens, R. , and Woo, R. , 2011, “ What Not to Do,” NREL PV Reliability Workshop, Golden, CO.
Micheli, L. , 2015, “ Enhancing Electrical and Heat Transfer Performance of High-Concentrating Photovoltaic Receivers,” Ph.D. thesis, University of Exeter, Penryn, UK.
Núñez, R. , Domínguez, C. , Askins, S. , Victoria, M. , Herrero, R. , Antón, I. , and Sala, G. , 2015, “ Determination of Spectral Variations by Means of Component Cells Useful for CPV Rating and Design,” Prog. Photovoltaics: Res. Appl., 20(1).
García-linares, P. , Domínguez, C. , Voarino, P. , Besson, P. , Baudrit, M. , and Bourget, L. , 2014, “ Effect of the Encapsulant Temperature on the Angular and Spectral Response of Multi-Junction Solar Cells,” 40th IEEE Photovoltaic Specialists Conference, Denver, CO, June 8–13m, pp. 3298–3303.
Fernández, E. F. , Pérez-Higueras, P. , Garcia Loureiro, A. J. , and Vidal, P. G. , 2013, “ Outdoor Evaluation of Concentrator Photovoltaic Systems Modules From Different Manufacturers: First Results and Steps,” Prog. Photovoltaics: Res. Appl., 21, pp. 693–701.
Fernández, E. F. , Loureiro, A. J. G. , and Smestad, G. P. , 2015, “ Multijunction Concentrator Solar Cells: Analysis and Fundamentals,” High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants, P. Pérez-Higueras and E. F. Fernández , eds., Springer International Publishing, Cham, Switzerland.
Fernández, E. F. , Almonacid, F. , Ruiz-Arias, J. A. , and Soria-Moya, A. , 2014, “ Analysis of the Spectral Variations on the Performance of High Concentrator Photovoltaic Modules Operating Under Different Real Climate Conditions,” Sol. Energy Mater. Sol. Cells, 127, pp. 179–187. [CrossRef]
Fernández, E. F. , and Almonacid, F. , 2014, “ Spectrally Corrected Direct Normal Irradiance Based on Artificial Neural Networks for High Concentrator Photovoltaic Applications,” Energy, 74, pp. 941–949. [CrossRef]
Fernández, E. F. , Siefer, G. , Almonacid, F. , Loureiro, A. J. G. , and Pérez-Higueras, P. , 2013, “ A Two Subcell Equivalent Solar Cell Model for III–V Triple Junction Solar Cells Under Spectrum and Temperature Variations,” Sol. Energy, 92, pp. 221–229. [CrossRef]
Peharz, G. , Siefer, G. , and Bett, A. W. , 2009, “ A Simple Method for Quantifying Spectral Impacts on Multi-Junction Solar Cells,” Sol. Energy, 83(9), pp. 1588–1598. [CrossRef]
Fernández, E. F. , Soria-Moya, A. , Almonacid, F. , and Aguilera, J. , 2016, “ Comparative Assessment of the Spectral Impact of the Energy Yield of High Concentrator and Conventional Photovoltaic Technology,” Sol. Energy Mater. Sol. Cells, 147, pp. 185–197. [CrossRef]
Fernández, E. F. , Almonacid, F. , Soria-Moya, A. , and Terrados, J. , 2015, “ Experimental Analysis of the Spectral Factor for Quantifying the Spectral Influence on Concentrator Photovoltaic Systems Under Real Operating Conditions,” Energy, 90, pp. 1878–1886. [CrossRef]
Rodrigo, P. , Micheli, L. , and Almonacid, F. , 2015, “ The High-Concentrator Photovoltaic Module,” High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants, P. Pérez-Higueras and E. F. Fernández , eds., Springer, Cham, Switzerland, pp. 115–151.
Pérez-Higueras, P. , Muñoz-Rodríguez, F. J. , Adame-Sánchez, C. , Hontoria-García, L. , Rus-Casas, C. , González-Rodríguez, A. , Aguilar-Peña, J. D. , Gallego-Álvarez, F. J. , González-Luchena, I. , and Fernández, E. F. , 2015, “ High-Concentrator Photovoltaic Power Plants: Energy Balance and Case Studies,” High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants, P. Pérez-Higueras and E. F. Fernández , eds., Springer, Cham, Switzerland, pp. 443–477.
IPC-The Institute for Interconnecting and Packaging Electronic Circuits, 1998, “ IPC-TM-650: Die Shear Strength (2.4.42.2),” IPC, Bannockburn, IL.
U.S. Department of Defense, 2013, “MIL-STD-883J: Method 2019.9,” ▪, ▪.
U.S. Defense Logistic Agency, 2014, “Test Method Standard Microcircuits (MIL-STD-883J),” U.S. Department of Defense, Columbus, OH.
IPC-The Institute for Interconnecting and Packaging Electronic Circuits, 1998, “IPC-TM-650: Wire Bond Pull Strength Date (2.4.42.3),” IPC, Bannockburn, IL.
U.S. Defense Logistic Agency, 2013, “MIL-STD-883G: Method 2011.9,” U.S. Department of Defense, Columbus, OH.
Almonacid, F. , Pérez-Higueras, P. J. , Fernández, E. F. , and Rodrigo, P. , 2012, “ Relation Between the Cell Temperature of a HCPV Module and Atmospheric Parameters,” Sol. Energy Mater. Sol. Cells, 105, pp. 322–327. [CrossRef]
Fernández, E. F. , Almonacid, F. , Rodrigo, P. , and Pérez-Higueras, P. , 2014, “ Calculation of the Cell Temperature of a High Concentrator Photovoltaic (HCPV) Module: A Study and Comparison of Different Methods,” Sol. Energy Mater. Sol. Cells, 121, pp. 144–151. [CrossRef]
Byun, I. , Ueno, R. , and Kim, B. , 2014, “ Micro-Heaters Embedded in PDMS Fabricated Using Dry Peel-Off Process,” Microelectron. Eng., 121, pp. 1–4. [CrossRef]
Fernández, E. F. , Almonacid, F. , and Garcia-Loureiro, A. J. , 2015, “ Multi-Junction Solar Cells Electrical Characterization by Neuronal Networks Under Different Irradiance, Spectrum and Cell Temperature,” Energy, 90, pp. 846–856. [CrossRef]
Domínguez, C. , Antón, I. , and Sala, G. , 2010, “ Multijunction Solar Cell Model for Translating I-V Characteristics as a Function of Irradiance, Spectrum, and Cell Temperature,” Prog. Photovoltaics: Res. Appl., 18, pp. 272–284.
Siefer, G. , and Bett, A. W. , 2014, “ Analysis of Temperature Coefficients for III-V Multi-Junction Concentrator Cells,” Prog. Photovoltaics: Res. Appl., 22(5), pp. 515–524. [CrossRef]
Kinsey, G. S. , Hebert, P. , Barbour, K. E. , Krut, D. D. , Cotal, H. L. , and Sherif, R. A. , 2008, “ Concentrator Multijunction Solar Cell Characteristics Under Variable Intensity and Temperature,” Prog. Photovoltaics: Res. Appl., 16(6), pp. 503–508. [CrossRef]
Prior, B. , 2011, Roadmap for CPV Technology: A Study Conducted by GTM Research, GTM Research, San Francisco CA.
Haysom, J. E. , Jafarieh, O. , Anis, H. , Hinzer, K. , and Wright, D. , 2015, “ Learning Curve Analysis of Concentrated Photovoltaic Systems,” Prog. Photovoltaics: Res. Appl., 23(11), pp. 1678–1686. [CrossRef]
2013, “Concentrated Photovoltaic Solar Installations Set to Boom in the Coming Years,” IHS Pressroom, last accessed Mar. 8, 2016.
Pryor, L. , Schlobohm, R. , and Brownell, B. , 2008, “A Comparison of Aluminum vs. Copper as Used in Electrical Equipment,” GE Industrial Solutions, Plainville, CT.

Figures

Grahic Jump Location
Fig. 1

Schematic of the system: a parabolic 3 m × 3 m mirror reflects the light onto the receiver, composed by the secondary concentrators, the homogenizers, the cell assembly, and the active cooling

Grahic Jump Location
Fig. 2

The IMS, covered by a thin green electric resistive layer, during the population process: the solder has been dispensed and the components are being placed

Grahic Jump Location
Fig. 4

Optical transmittance of a 3-mm thick Sylgard poured on a 2-mm Borofloat glass between 250 and 2200 nm. It is compared with the transmittance of the bare 2-mm Borofloat glass. The EQE of the cell used in this application has been added to the graph.

Grahic Jump Location
Fig. 5

SEM cross-sectional photomicrograph of the cell assembly

Grahic Jump Location
Fig. 6

Causes of the wire breaking during the wire bond pull test results

Grahic Jump Location
Fig. 7

Comparison of I–V curves for two 144-cell assemblies at 1× under 1000 W/m2 DNI, AM1.5, and 28 °C temperature. The series of the 3C42 cell assembly presented in this paper are named as A and B. The series of the 3C40 cell assembly presented in Ref. [45] are named as A* and B*.

Grahic Jump Location
Fig. 8

Comparison between the geometries of the prototype and the final board. Dimensions are in millimeter.

Grahic Jump Location
Fig. 9

Particulars of the edges of the boards: the prototype design (a) and the improved one (b)

Grahic Jump Location
Fig. 10

The standoff placed on a cell assembly (a) and two packed assemblies (b)

Grahic Jump Location
Fig. 11

Cost breakdown of the produced cell assembly

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In